7mtc
From Proteopedia
Structure of freshly purified SARS-CoV-2 S2P spike at pH 7.4
Structural highlights
Function[SPIKE_SARS2] attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099] Publication Abstract from PubMedThe SARS-CoV-2 spike is the primary target of virus-neutralizing antibodies and critical to the development of effective vaccines against COVID-19. Here, we demonstrate that the prefusion-stabilized two-proline "S2P" spike -widely employed for laboratory work and clinical studies- unfolds when stored at 4 degrees C, physiological pH, as observed by electron microscopy (EM) and differential scanning calorimetry, but that its trimeric, native-like conformation can be reacquired by low pH treatment. When stored for approximately one week, this unfolding does not significantly alter antigenic characteristics; however, longer storage diminishes antibody binding, and month-old spike elicits virtually no neutralization in mice despite inducing high ELISA-binding titers. Cryo-EM structures reveal the folded fraction of spike to decrease with aging, though its structure remains largely similar, although with varying mobility of the receptor-binding domain. Thus, the SARS-CoV-2 spike is susceptible to unfolding which affects immunogenicity, highlighting the need to monitor its integrity. SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity.,Olia AS, Tsybovsky Y, Chen SJ, Liu C, Nazzari AF, Ou L, Wang L, Kong WP, Leung K, Liu T, Stephens T, Teng IT, Wang S, Yang ES, Zhang B, Zhang Y, Zhou T, Mascola JR, Kwong PD J Biol Chem. 2021 Aug 27:101127. doi: 10.1016/j.jbc.2021.101127. PMID:34461095[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|