7yjs
From Proteopedia
Crystal structure of MCR-1-S treated by sodium aurothiosulfate
Structural highlights
FunctionMCR1_ECOLX Probably catalyzes the addition of a phosphoethanolamine moiety to lipid A. Phosphoethanolamine modification of lipid A gives polymyxin resistance (PubMed:26603172).[1] Confers resistance to polymyxin-type antibiotics; expression of the Mcr-1 protein in E.coli increases colistin and polymyxin B minimal inhibitory concentration (MIC) from 0.5 mg/ml to 2.0 mg/ml. The pHNSHP45 plasmid can transfer efficiently (0.1 to 0.001) to other E.coli strains by conjugation and increases polymxin MIC by 8- to 16-fold; it may not require selective pressure to be maintained in the cell. When transformed into K.pneumoniae or P.aeruginosa it also increases polymxin MIC 8- to 16-fold. In a murine (BALB/c mice) thigh infection study using an mcr1-encoding plasmid isolated from a human patient, the plasmid confers in vivo protection against colistin (PubMed:26603172).[2] Publication Abstract from PubMedThe emergence and rapid spread of the mobile colistin resistance gene mcr-1 among bacterial species and hosts significantly challenge the efficacy of "last-line" antibiotic colistin. Previously, we reported silver nitrate and auranofin serve as colistin adjuvants for combating mcr-1-positive bacteria. Herein, we uncovered more gold-based drugs and nanoparticles, and found that they exhibited varying degree of synergisms with colistin on killing mcr-1-positive bacteria. However, pre-activation of the drugs by either glutathione or N-acetyl cysteine, thus releasing and accumulating gold ions, is perquisite for their abilities to substitute zinc cofactor from MCR-1 enzyme. X-ray crystallography and biophysical studies further supported the proposed mechanism. This study not only provides basis for combining gold-based drugs and colistin for combating mcr-1-positive bacterial infections, but also undoubtedly opens a new horizon for metabolism details of gold-based drugs in overcoming antimicrobial resistance. Gold drugs as colistin adjuvants in the fight against MCR-1 producing bacteria.,Zhang Q, Wang M, Hu X, Yan A, Ho PL, Li H, Sun H J Biol Inorg Chem. 2023 Jan 20. doi: 10.1007/s00775-022-01983-y. PMID:36662362[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|