Structural highlights
Function
PAPD_ECOLX Binds and caps interactive surfaces on pilus subunits to prevent them from participating in non-productive interactions. Facilitates the import of subunits into the periplasm. May facilitate subunit folding. Chaperone-subunit complexes are then targeted to the PapC outer membrane usher where the chaperone must uncap from the subunits.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Many Gram-negative pathogens assemble architecturally and functionally diverse adhesive pili on their surfaces by the chaperone-usher pathway. Immunoglobulin-like periplasmic chaperones escort pilus subunits to the usher, a large protein complex that facilitates the translocation and assembly of subunits across the outer membrane. The crystal structure of the PapD-PapK chaperone-subunit complex, determined at 2.4 angstrom resolution, reveals that the chaperone functions by donating its G(1) beta strand to complete the immunoglobulin-like fold of the subunit via a mechanism termed donor strand complementation. The structure of the PapD-PapK complex also suggests that during pilus biogenesis, every subunit completes the immunoglobulin-like fold of its neighboring subunit via a mechanism termed donor strand exchange.
Structural basis of chaperone function and pilus biogenesis.,Sauer FG, Futterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G Science. 1999 Aug 13;285(5430):1058-61. PMID:10446050[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Sauer FG, Futterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G. Structural basis of chaperone function and pilus biogenesis. Science. 1999 Aug 13;285(5430):1058-61. PMID:10446050