From Proteopedia
proteopedia linkproteopedia link
This Sandbox is Reserved from 30/01/2013, through 30/12/2013 for use in the course "Biochemistry II" taught by Hannah Tims at the Messiah College. This reservation includes Sandbox Reserved 686 through Sandbox Reserved 700.
|
To get started:
- Click the edit this page tab at the top. Save the page after each step, then edit it again.
- Click the 3D button (when editing, above the wikitext box) to insert Jmol.
- show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
- Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.
More help: Help:Editing
|
Complera: Emtricitabine/rilpivirine/tenofovir
Upon infection, HIV binds to the CD4 receptor in a helper T cell or other CD4-presenting lymphocyte. The viral envelope is then fused with the cellular membrane allowing intracellular release of viral particles. The utilization of several enzymes helps to solidify the virus’s hold on the cell. HIV reverse transcriptase (RT) works to convert the viral single-stranded RNA (ssRNA) into DNA. HIV integrase then helps to incorporate the newly reverse transcribed DNA into the cellular genome. (Voet et al. 2008)
RPV in the
In red are the binding pocket residues p66 (Leu-100, Lys-101, Lys-103, Val-106, Thr-107, Val-108, Val-179, Tyr-181, Tyr-188, Val-189, Gly-190, Phe-227, Trp-229, Leu- 234, and Tyr-318) and p51(Glu-138). Singh et al.
Reverse Transcriptase:
Image:Emtricitabine3.png