2ovr
From Proteopedia
|
Structure of the Skp1-Fbw7-CyclinEdegN complex
Overview
The ubiquitin-mediated proteolysis of cyclin E plays a central role in, cell-cycle progression, and cyclin E accumulation is a common event in, cancer. Cyclin E degradation is triggered by multisite phosphorylation, which induces binding to the SCF(Fbw7) ubiquitin ligase complex., Structures of the Skp1-Fbw7 complex bound to cyclin E peptides identify a, doubly phosphorylated pThr380/pSer384 cyclin E motif as an optimal, high-affinity degron and a singly phosphorylated pThr62 motif as a, low-affinity one. Biochemical data indicate that the closely related yeast, SCF(Cdc4) complex recognizes the multisite phosphorylated Sic1 substrate, similarly and identify three doubly phosphorylated Sic1 degrons, each, capable of high-affinity interactions with two Cdc4 phosphate binding, sites. A model that explains the role of multiple cyclin E/Sic1 degrons is, provided by the findings that Fbw7 and Cdc4 dimerize, that Fbw7, dimerization enhances the turnover of a weakly associated cyclin E in, vivo, and that Cdc4 dimerization increases the rate and processivity of, Sic1 ubiquitination in vitro.
About this Structure
2OVR is a Protein complex structure of sequences from Homo sapiens with as ligand. Full crystallographic information is available from OCA.
Reference
Structure of a Fbw7-Skp1-Cyclin E Complex: Multisite-Phosphorylated Substrate Recognition by SCF Ubiquitin Ligases., Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP, Mol Cell. 2007 Apr 13;26(1):131-43. PMID:17434132
Page seeded by OCA on Wed Jan 23 15:36:25 2008