4nzm

From Proteopedia

Revision as of 09:38, 2 April 2014 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 4nzm

Contents

Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 5-PA-InsP5

Function

[VIP2_HUMAN] Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at positions 1 or 3 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates at position 1 or 3 PP-InsP5, produced by IP6Ks from InsP6, to produce (PP)2-InsP4.[1] [2]

About this Structure

4nzm is a 1 chain structure. Full crystallographic information is available from OCA.

Reference

  1. Fridy PC, Otto JC, Dollins DE, York JD. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem. 2007 Oct 19;282(42):30754-62. Epub 2007 Aug 9. PMID:17690096 doi:http://dx.doi.org/M704656200
  2. Choi JH, Williams J, Cho J, Falck JR, Shears SB. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem. 2007 Oct 19;282(42):30763-75. Epub 2007 Aug 16. PMID:17702752 doi:http://dx.doi.org/M704655200

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools