2nll

From Proteopedia

Revision as of 17:34, 24 March 2013 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 2nll

Contents

RETINOID X RECEPTOR-THYROID HORMONE RECEPTOR DNA-BINDING DOMAIN HETERODIMER BOUND TO THYROID RESPONSE ELEMENT DNA

Template:ABSTRACT PUBMED 7746322

Disease

[THB1_HUMAN] Defects in THRB are the cause of generalized thyroid hormone resistance (GTHR) [MIM:188570]. GTHR is a disease characterized by goiter, abnormal mental functions, increased susceptibility to infections, abnormal growth and bone maturation, tachycardia and deafness. Affected individuals may also have attention deficit-hyperactivity disorders (ADHD) and language difficulties. GTHR patients also have high levels of circulating thyroid hormones (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH).[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18] Defects in THRB are the cause of generalized thyroid hormone resistance autosomal recessive (GTHRAR) [MIM:274300]. An autosomal recessive disorder characterized by goiter, clinical euthyroidism, end-organ unresponsiveness to thyroid hormone, abnormal growth and bone maturation, and deafness. Patients also have high levels of circulating thyroid hormones, with elevated thyroid stimulating hormone. Defects in THRB are the cause of selective pituitary thyroid hormone resistance (PRTH) [MIM:145650]; also known as familial hyperthyroidism due to inappropriate thyrotropin secretion. PRTH is a variant form of thyroid hormone resistance and is characterized by clinical hyperthyroidism, with elevated free thyroid hormones, but inappropriately normal serum TSH. Unlike GRTH, where the syndrome usually segregates with a dominant allele, the mode of inheritance in PRTH has not been established.[19][20]

Function

[THB1_HUMAN] High affinity receptor for triiodothyronine.[21] [RXRA_HUMAN] Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. The high affinity ligand for RXRs is 9-cis retinoic acid. RXRA serves as a common heterodimeric partner for a number of nuclear receptors. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcriptional suppression. On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation. The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes.[22][23][24][25]

About this Structure

2nll is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature. 1995 May 18;375(6528):203-11. PMID:7746322 doi:http://dx.doi.org/10.1038/375203a0
  • Wang LH, Yang XY, Zhang X, Mihalic K, Fan YX, Xiao W, Howard OM, Appella E, Maynard AT, Farrar WL. Suppression of breast cancer by chemical modulation of vulnerable zinc fingers in estrogen receptor. Nat Med. 2004 Jan;10(1):40-7. Epub 2003 Dec 14. PMID:14702633 doi:10.1038/nm969
  • Hicks JM, Hsu VL. The extended left-handed helix: a simple nucleic acid-binding motif. Proteins. 2004 May 1;55(2):330-8. PMID:15048824 doi:10.1002/prot.10630
  • Mahony S, Auron PE, Benos PV. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies. PLoS Comput Biol. 2007 Mar 30;3(3):e61. Epub 2007 Feb 15. PMID:17397256 doi:10.1371/journal.pcbi.0030061
  1. Sakurai A, Takeda K, Ain K, Ceccarelli P, Nakai A, Seino S, Bell GI, Refetoff S, DeGroot LJ. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor beta. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8977-81. PMID:2510172
  2. Usala SJ, Tennyson GE, Bale AE, Lash RW, Gesundheit N, Wondisford FE, Accili D, Hauser P, Weintraub BD. A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds. J Clin Invest. 1990 Jan;85(1):93-100. PMID:2153155 doi:http://dx.doi.org/10.1172/JCI114438
  3. Usala SJ, Menke JB, Watson TL, Berard WE, Bradley C, Bale AE, Lash RW, Weintraub BD. A new point mutation in the 3,5,3'-triiodothyronine-binding domain of the c-erbA beta thyroid hormone receptor is tightly linked to generalized thyroid hormone resistance. J Clin Endocrinol Metab. 1991 Jan;72(1):32-8. PMID:1846005
  4. Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD. Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two "hot spot" regions of the ligand binding domain. J Clin Invest. 1991 Dec;88(6):2123-30. PMID:1661299 doi:http://dx.doi.org/10.1172/JCI115542
  5. Usala SJ, Menke JB, Watson TL, Wondisford FE, Weintraub BD, Berard J, Bradley WE, Ono S, Mueller OT, Bercu BB. A homozygous deletion in the c-erbA beta thyroid hormone receptor gene in a patient with generalized thyroid hormone resistance: isolation and characterization of the mutant receptor. Mol Endocrinol. 1991 Mar;5(3):327-35. PMID:1653889
  6. Adams M, Nagaya T, Tone Y, Jameson JL, Chatterjee VK. Functional properties of a novel mutant thyroid hormone receptor in a family with generalized thyroid hormone resistance syndrome. Clin Endocrinol (Oxf). 1992 Mar;36(3):281-9. PMID:1563081
  7. Cugini CD Jr, Leidy JW Jr, Chertow BS, Berard J, Bradley WE, Menke JB, Hao EH, Usala SJ. An arginine to histidine mutation in codon 315 of the c-erbA beta thyroid hormone receptor in a kindred with generalized resistance to thyroid hormones results in a receptor with significant 3,5,3'-triiodothyronine binding activity. J Clin Endocrinol Metab. 1992 May;74(5):1164-70. PMID:1314846
  8. Shuto Y, Wakabayashi I, Amuro N, Minami S, Okazaki T. A point mutation in the 3,5,3'-triiodothyronine-binding domain of thyroid hormone receptor-beta associated with a family with generalized resistance to thyroid hormone. J Clin Endocrinol Metab. 1992 Jul;75(1):213-7. PMID:1619012
  9. Sasaki S, Nakamura H, Tagami T, Miyoshi Y, Tanaka K, Imura H. A point mutation of the T3 receptor beta 1 gene in a kindred of generalized resistance to thyroid hormone. Mol Cell Endocrinol. 1992 Apr;84(3):159-66. PMID:1587388
  10. Behr M, Loos U. A point mutation (Ala229 to Thr) in the hinge domain of the c-erbA beta thyroid hormone receptor gene in a family with generalized thyroid hormone resistance. Mol Endocrinol. 1992 Jul;6(7):1119-26. PMID:1324420
  11. Weiss RE, Weinberg M, Refetoff S. Identical mutations in unrelated families with generalized resistance to thyroid hormone occur in cytosine-guanine-rich areas of the thyroid hormone receptor beta gene. Analysis of 15 families. J Clin Invest. 1993 Jun;91(6):2408-15. PMID:8514853 doi:http://dx.doi.org/10.1172/JCI116474
  12. Weiss RE, Chyna B, Duell PB, Hayashi Y, Sunthornthepvarakul T, Refetoff S. A new point mutation (C446R) in the thyroid hormone receptor-beta gene of a family with resistance to thyroid hormone. J Clin Endocrinol Metab. 1994 May;78(5):1253-6. PMID:8175986
  13. Refetoff S, Weiss RE, Wing JR, Sarne D, Chyna B, Hayashi Y. Resistance to thyroid hormone in subjects from two unrelated families is associated with a point mutation in the thyroid hormone receptor beta gene resulting in the replacement of the normal proline 453 with serine. Thyroid. 1994 Fall;4(3):249-54. PMID:7833659
  14. Pohlenz J, Schonberger W, Wemme H, Winterpacht A, Wirth S, Zabel B. New point mutation (R243W) in the hormone binding domain of the c-erbA beta 1 gene in a family with generalized resistance to thyroid hormone. Hum Mutat. 1996;7(1):79-81. PMID:8664910 doi:<79::AID-HUMU15>3.0.CO;2-P 10.1002/(SICI)1098-1004(1996)7:1<79::AID-HUMU15>3.0.CO;2-P
  15. Seto D, Weintraub BD. Rapid molecular diagnosis of mutations associated with generalized thyroid hormone resistance by PCR-coupled automated direct sequencing of genomic DNA: detection of two novel mutations. Hum Mutat. 1996;8(3):247-57. PMID:8889584 doi:<247::AID-HUMU8>3.0.CO;2-6 10.1002/(SICI)1098-1004(1996)8:3<247::AID-HUMU8>3.0.CO;2-6
  16. Menzaghi C, Di Paola R, Corrias A, Einaudi S, Trischitta V, De Sanctis C, De Filippis V. T426I a new mutation in the thyroid hormone receptor beta gene in a sporadic patient with resistance to thyroid hormone and dysmorphism. Mutations in brief no. 192. Online. Hum Mutat. 1998;12(4):289. PMID:10660344
  17. Mamanasiri S, Yesil S, Dumitrescu AM, Liao XH, Demir T, Weiss RE, Refetoff S. Mosaicism of a thyroid hormone receptor-beta gene mutation in resistance to thyroid hormone. J Clin Endocrinol Metab. 2006 Sep;91(9):3471-7. Epub 2006 Jun 27. PMID:16804041 doi:10.1210/jc.2006-0727
  18. Rivolta CM, Olcese MC, Belforte FS, Chiesa A, Gruneiro-Papendieck L, Iorcansky S, Herzovich V, Cassorla F, Gauna A, Gonzalez-Sarmiento R, Targovnik HM. Genotyping of resistance to thyroid hormone in South American population. Identification of seven novel missense mutations in the human thyroid hormone receptor beta gene. Mol Cell Probes. 2009 Jun-Aug;23(3-4):148-53. doi: 10.1016/j.mcp.2009.02.002., Epub 2009 Mar 4. PMID:19268523 doi:10.1016/j.mcp.2009.02.002
  19. Flynn TR, Hollenberg AN, Cohen O, Menke JB, Usala SJ, Tollin S, Hegarty MK, Wondisford FE. A novel C-terminal domain in the thyroid hormone receptor selectively mediates thyroid hormone inhibition. J Biol Chem. 1994 Dec 30;269(52):32713-6. PMID:7528740
  20. Geffner ME, Su F, Ross NS, Hershman JM, Van Dop C, Menke JB, Hao E, Stanzak RK, Eaton T, Samuels HH, et al.. An arginine to histidine mutation in codon 311 of the C-erbA beta gene results in a mutant thyroid hormone receptor that does not mediate a dominant negative phenotype. J Clin Invest. 1993 Feb;91(2):538-46. PMID:8381821 doi:http://dx.doi.org/10.1172/JCI116233
  21. Chou WY, Cheng YS, Ho CL, Liu ST, Liu PY, Kuo CC, Chang HP, Chen YH, Chang GG, Huang SM. Human spot 14 protein interacts physically and functionally with the thyroid receptor. Biochem Biophys Res Commun. 2007 May 25;357(1):133-8. Epub 2007 Mar 26. PMID:17418816 doi:10.1016/j.bbrc.2007.03.103
  22. Gorla-Bajszczak A, Juge-Aubry C, Pernin A, Burger AG, Meier CA. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol. 1999 Jan 25;147(1-2):37-47. PMID:10195690
  23. Harish S, Ashok MS, Khanam T, Rangarajan PN. Serine 27, a human retinoid X receptor alpha residue, phosphorylated by protein kinase A is essential for cyclicAMP-mediated downregulation of RXRalpha function. Biochem Biophys Res Commun. 2000 Dec 29;279(3):853-7. PMID:11162439 doi:10.1006/bbrc.2000.4043
  24. Tsutsumi T, Suzuki T, Shimoike T, Suzuki R, Moriya K, Shintani Y, Fujie H, Matsuura Y, Koike K, Miyamura T. Interaction of hepatitis C virus core protein with retinoid X receptor alpha modulates its transcriptional activity. Hepatology. 2002 Apr;35(4):937-46. PMID:11915042 doi:10.1053/jhep.2002.32470
  25. Santos NC, Kim KH. Activity of retinoic acid receptor-alpha is directly regulated at its protein kinase A sites in response to follicle-stimulating hormone signaling. Endocrinology. 2010 May;151(5):2361-72. doi: 10.1210/en.2009-1338. Epub 2010 Mar , 9. PMID:20215566 doi:10.1210/en.2009-1338

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools