4g4e

From Proteopedia

Revision as of 06:27, 14 August 2013 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 4g4e

Contents

Crystal structure of the L88A mutant of HslV from Escherichia coli

Template:ABSTRACT PUBMED 23707406

Function

[HSLV_ECOLI] Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. HslV is not believed to degrade folded proteins.[1] [2] [3] [4] [5] [6] [7]

About this Structure

4g4e is a 12 chain structure with sequence from Escherichia coli k-12. Full crystallographic information is available from OCA.

Reference

  • Park E, Lee JW, Yoo HM, Ha BH, An JY, Jeon YJ, Seol JH, Eom SH, Chung CH. Structural Alteration in the Pore Motif of the Bacterial 20S Proteasome Homolog HslV Leads to Uncontrolled Protein Degradation. J Mol Biol. 2013 May 21. pii: S0022-2836(13)00310-0. doi:, 10.1016/j.jmb.2013.05.011. PMID:23707406 doi:10.1016/j.jmb.2013.05.011
  1. Yoo SJ, Seol JH, Shin DH, Rohrwild M, Kang MS, Tanaka K, Goldberg AL, Chung CH. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem. 1996 Jun 14;271(24):14035-40. PMID:8662828
  2. Rohrwild M, Coux O, Huang HC, Moerschell RP, Yoo SJ, Seol JH, Chung CH, Goldberg AL. HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5808-13. PMID:8650174
  3. Seol JH, Yoo SJ, Shin DH, Shim YK, Kang MS, Goldberg AL, Chung CH. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur J Biochem. 1997 Aug 1;247(3):1143-50. PMID:9288941
  4. Kanemori M, Nishihara K, Yanagi H, Yura T. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol. 1997 Dec;179(23):7219-25. PMID:9393683
  5. Seong IS, Oh JY, Yoo SJ, Seol JH, Chung CH. ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett. 1999 Jul 30;456(1):211-4. PMID:10452560
  6. Kanemori M, Yanagi H, Yura T. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J Biol Chem. 1999 Jul 30;274(31):22002-7. PMID:10419524
  7. Burton RE, Baker TA, Sauer RT. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol. 2005 Mar;12(3):245-51. Epub 2005 Feb 6. PMID:15696175 doi:10.1038/nsmb898

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools