Publication Abstract from PubMed
To better understand TCR discrimination of multiple ligands, we have analyzed the crystal structures of two Hb peptide/I-E(k) complexes that differ by only a single amino acid substitution at the P6 anchor position within the peptide (E73D). Detailed comparison of multiple independently determined structures at 1.9 A resolution reveals that removal of a single buried methylene group can alter a critical portion of the TCR recognition surface. Significant variance was observed in the peptide P5-P8 main chain as well as a rotamer difference at LeuP8, approximately 10 A distal from the substitution. No significant variations were observed in the conformation of the two MHC class II molecules. The ligand alteration results in two peptide/MHC complexes that generate bulk T cell responses that are distinct and essentially nonoverlapping. For the Hb-specific T cell 3.L2, substitution reduces the potency of the ligand 1000-fold. Soluble 3.L2 TCR binds the two peptide/MHC complexes with similar affinity, although with faster kinetics. These results highlight the role of subtle variations in MHC Ag presentation on T cell activation and signaling.
Structural and functional consequences of altering a peptide MHC anchor residue.,Kersh GJ, Miley MJ, Nelson CA, Grakoui A, Horvath S, Donermeyer DL, Kappler J, Allen PM, Fremont DH J Immunol. 2001 Mar 1;166(5):3345-54. PMID:11207290[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.