| Structural highlights
1et1 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: |
| Resources: | FirstGlance, OCA, RCSB, PDBsum |
Disease
[PTHY_HUMAN] Defects in PTH are a cause of familial isolated hypoparathyroidism (FIH) [MIM:146200]; also called autosomal dominant hypoparathyroidism or autosomal dominant hypocalcemia. FIH is characterized by hypocalcemia and hyperphosphatemia due to inadequate secretion of parathyroid hormone. Symptoms are seizures, tetany and cramps. FIH exist both as autosomal dominant and recessive forms of hypoparathyroidism.[1] [2] [3]
Function
[PTHY_HUMAN] PTH elevates calcium level by dissolving the salts in bone and preventing their renal excretion. Stimulates [1-14C]-2-deoxy-D-glucose (2DG) transport and glycogen synthesis in osteoblastic cells.[4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The N-terminal fragment 1-34 of parathyroid hormone (PTH), administered intermittently, results in increased bone formation in patients with osteoporosis. PTH and a related molecule, parathyroid hormone-related peptide (PTHrP), act on cells via a common PTH/PTHrP receptor. To define more precisely the ligand-receptor interactions, we have crystallized human PTH (hPTH)-(1-34) and determined the structure to 0.9-A resolution. hPTH-(1-34) crystallizes as a slightly bent, long helical dimer. Analysis reveals that the extended helical conformation of hPTH-(1-34) is the likely bioactive conformation. We have developed molecular models for the interaction of hPTH-(1-34) and hPTHrP-(1-34) with the PTH/PTHrP receptor. A receptor binding pocket for the N terminus of hPTH-(1-34) and a hydrophobic interface with the receptor for the C terminus of hPTH-(1-34) are proposed.
Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution.,Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F J Biol Chem. 2000 Sep 1;275(35):27238-44. PMID:10837469[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 1990 Oct;86(4):1084-7. PMID:2212001 doi:http://dx.doi.org/10.1172/JCI114811
- ↑ Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S. A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab. 1999 Oct;84(10):3792-6. PMID:10523031
- ↑ Datta R, Waheed A, Shah GN, Sly WS. Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19989-94. Epub 2007 Dec 3. PMID:18056632 doi:10.1073/pnas.0708725104
- ↑ Zoidis E, Ghirlanda-Keller C, Schmid C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem. 2011 Feb;348(1-2):33-42. doi: 10.1007/s11010-010-0634-z. Epub, 2010 Nov 13. PMID:21076856 doi:10.1007/s11010-010-0634-z
- ↑ Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F. Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution. J Biol Chem. 2000 Sep 1;275(35):27238-44. PMID:10837469 doi:10.1074/jbc.M001134200
|