Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A high precision NMR structure of oxidized glutaredoxin 3 [C65Y] from Escherichia coli has been determined. The conformation of the active site including the disulphide bridge is highly similar to those in glutaredoxins from pig liver and T4 phage. A comparison with the previously determined structure of glutaredoxin 3 [C14S, C65Y] in a complex with glutathione reveals conformational changes between the free and substrate-bound form which includes the sidechain of the conserved, active site tyrosine residue. In the oxidized form this tyrosine is solvent exposed, while it adopts a less exposed conformation, stabilized by hydrogen bonds, in the mixed disulfide with glutathione. The structures further suggest that the formation of a covalent linkage between glutathione and glutaredoxin 3 is necessary in order to induce these structural changes upon binding of the glutathione peptide. This could explain the observed low affinity of glutaredoxins for S-blocked glutathione analogues, in spite of the fact that glutaredoxins are highly specific reductants of glutathione mixed disulfides.
NMR structure of oxidized glutaredoxin 3 from Escherichia coli.,Nordstrand K, Sandstrom A, Aslund F, Holmgren A, Otting G, Berndt KD J Mol Biol. 2000 Oct 27;303(3):423-32. PMID:11031118[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Nordstrand K, Sandstrom A, Aslund F, Holmgren A, Otting G, Berndt KD. NMR structure of oxidized glutaredoxin 3 from Escherichia coli. J Mol Biol. 2000 Oct 27;303(3):423-32. PMID:11031118 doi:http://dx.doi.org/10.1006/jmbi.2000.4145