| Structural highlights
1yf8 is a 2 chain structure with sequence from Viscum album. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Ligands: | , , , , ,
| | Activity: | rRNA N-glycosylase, with EC number 3.2.2.22 |
| Resources: | FirstGlance, OCA, RCSB, PDBsum |
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Ribosome-inactivating proteins (RIPs) are toxins involved in plant defense. How the plant prevents autotoxicity is not yet fully understood. The present study is the first structural evidence of a naturally inhibited form of RIP from a plant. Himalayan mistletoe RIP (HmRIP) was purified from Viscum album leaves and crystallized with lactose. The structure was determined by the molecular replacement method and refined at 2.8-A resolution. The crystal structure revealed the presence of high quality non-protein electron density at the active site, into which a pteridine derivative (2-amino 4-isopropyl 6-carboxyl pteridine) was modeled. The carboxyl group of the ligand binds strongly with the key active site residue Arg(162), nullifies the positive charge required for catalysis, and thereby acts as a natural inhibitor. Lectin subunits of RIPs have two active sugar-binding sites present in 1alpha- and 2gamma-subdomains. A third functionally active site has been identified in the 1beta-subdomain of HmRIP. The 1beta-site is active despite the absence of conserved polar sugar-binding residues. Loss of these residues is compensated by the following: (i) the presence of an extended site where the penultimate sugar also interacts with the protein; (ii) the interactions of galactose with the protein main chain carbonyl and amide nitrogen atoms; (iii) the presence of a well defined pocket encircled by four walls; and (iv) a favorable stacking of the galactose ring with Tyr(66) besides the conserved Phe(75). The mode of sugar binding is also distinct at the 1alpha and 2gamma sugar-binding sites.
Crystal structure of himalayan mistletoe ribosome-inactivating protein reveals the presence of a natural inhibitor and a new functionally active sugar-binding site.,Mishra V, Bilgrami S, Sharma RS, Kaur P, Yadav S, Krauspenhaar R, Betzel C, Voelter W, Babu CR, Singh TP J Biol Chem. 2005 May 27;280(21):20712-21. Epub 2005 Mar 17. PMID:15774467[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Mishra V, Bilgrami S, Sharma RS, Kaur P, Yadav S, Krauspenhaar R, Betzel C, Voelter W, Babu CR, Singh TP. Crystal structure of himalayan mistletoe ribosome-inactivating protein reveals the presence of a natural inhibitor and a new functionally active sugar-binding site. J Biol Chem. 2005 May 27;280(21):20712-21. Epub 2005 Mar 17. PMID:15774467 doi:10.1074/jbc.M500735200
|