1qe6 is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The "ELR" (Glu-Leu-Arg) tripeptide sequence near the N-terminus of interleukin-8 (IL-8) contributes a large part of the receptor binding free energy. Prior X-ray and nuclear magnetic resonance (NMR) structures of IL-8 have shown this region of the molecule to be highly mobile. We reasoned that a hydrophobic interaction between the leucine and the neighboring beta-turn might exist in the receptor binding conformation of the N-terminus. To test this hypothesis, we mutated two residues to cysteine and connected the N-terminus to the beta-turn. The mutant retains receptor binding affinity reasonably close to wild type and allows the characterization of a high-affinity conformation that may be useful in the design of small IL-8 mimics. The L5C/H33C mutant is refined to R-values of R = 20.6% and Rfree = 27.7% at 2.35 A resolution. Other receptor binding determinants reside in the "N-loop" found after "ELR" and preceding the first beta-strand. All available structures of IL-8 have been found with one of two distinct N-loop conformations. One of these is relevant for receptor binding, based on NMR results with receptor peptides. The other conformation obscures the receptor-peptide binding surface and may have an undetermined but necessarily different function.
Receptor-binding conformation of the "ELR" motif of IL-8: X-ray structure of the L5C/H33C variant at 2.35 A resolution.,Gerber N, Lowman H, Artis DR, Eigenbrot C Proteins. 2000 Mar 1;38(4):361-7. PMID:10707023[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Gerber N, Lowman H, Artis DR, Eigenbrot C. Receptor-binding conformation of the "ELR" motif of IL-8: X-ray structure of the L5C/H33C variant at 2.35 A resolution. Proteins. 2000 Mar 1;38(4):361-7. PMID:10707023