| Structural highlights
1rne is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | ,
| Activity: | Renin, with EC number 3.4.23.15 |
Resources: | FirstGlance, OCA, RCSB, PDBsum |
Disease
[RENI_HUMAN] Defects in REN are a cause of renal tubular dysgenesis (RTD) [MIM:267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).[1] Defects in REN are the cause of familial juvenile hyperuricemic nephropathy type 2 (HNFJ2) [MIM:613092]. It is a renal disease characterized by juvenile onset of hyperuricemia, slowly progressive renal failure and anemia.[2]
Function
[RENI_HUMAN] Renin is a highly specific endopeptidase, whose only known function is to generate angiotensin I from angiotensinogen in the plasma, initiating a cascade of reactions that produce an elevation of blood pressure and increased sodium retention by the kidney.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Recombinant human glycosylated renin has been crystallized in complex with CGP 38'560, a transition state analog inhibitor (IC50 = 2 x 10(-9) M), in a tetragonal crystal form. The structure has been determined to a resolution of 2.4 A and refined to a crystallographic Rfactor of 17.6%. It reveals the conformation of the inhibitor as well as its interactions with the enzyme active site. The active site is a deep cleft between the N- and the C-terminal domains to which the inhibitor binds in an extended conformation filling the S4 to S2' pockets. The structure of the complex is compared with that of the related uninhibited enzyme pepsin. Significant changes in the relative orientation of the N- and C-terminal domains are observed. In the inhibited renin structure the C-terminal loop segments forming the active site are closer to those from the N-terminal domain than in the related "open" pepsin structure. In addition, the structure of uninhibited glycosylated renin has been determined at 2.8 A resolution from a cubic crystal form with two renin molecules in the asymmetric unit. The two independent renin molecules show different conformations with respect to the relative orientation of their N- and C-terminal domains; one molecule is found in the "closed inhibited" conformation, the other in the "open uninhibited" conformation.
The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analog inhibitor.,Rahuel J, Priestle JP, Grutter MG J Struct Biol. 1991 Dec;107(3):227-36. PMID:1807356[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoide AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005 Sep;37(9):964-8. Epub 2005 Aug 14. PMID:16116425 doi:ng1623
- ↑ Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet'al P, Kalbacova M, Baresova V, Sikora J, Blazkova H, Zivny J, Ivanek R, Stranecky V, Sovova J, Claes K, Lerut E, Fryns JP, Hart PS, Hart TC, Adams JN, Pawtowski A, Clemessy M, Gasc JM, Gubler MC, Antignac C, Elleder M, Kapp K, Grimbert P, Bleyer AJ, Kmoch S. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009 Aug;85(2):204-13. Epub 2009 Aug 6. PMID:19664745 doi:10.1016/j.ajhg.2009.07.010
- ↑ Rahuel J, Priestle JP, Grutter MG. The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analog inhibitor. J Struct Biol. 1991 Dec;107(3):227-36. PMID:1807356
|