Sandbox Reserved 1167

From Proteopedia

Revision as of 03:04, 30 March 2016 by Alexis Coulis (Talk | contribs)
Jump to: navigation, search
This Sandbox is Reserved from Jan 11 through August 12, 2016 for use in the course CH462 Central Metabolism taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1160 through Sandbox Reserved 1184.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Contents

Class B Human Glucagon G-Protein Coupled Receptor

Human Glucagon Class B GPCR ( 7tm PDB: 4l6r, ECD PDB: 4ers)

Drag the structure with the mouse to rotate

Glucagon Binding

Research has shown that Class B GCPRs exist in either an open or closed conformation. Transitioning between states, the ECD rotates and moves down towards the 7tm domain. The stalk region of Helix I helps to facilitate this motion of the ECD.

In its open state, the ECD and the stalk region of Helix 1 are almost perpendicular to the membrane surface. In the case of the human glucagon receptor, this open confirmation is stabilized by glucagon binding. In the absence of glucagon, however, the GCPR adopts a closed conformation in which all three of the extracellular loops of the 7tm (ECL1, ECL2, and ECL3) can interact with the ECD. In this closed state, the ECD covers the extracellular surface of the 7tm.

This transition mechanism is consistent with the "two-domain" binding mechanism of Class B GCPRs in which (1) the C-terminus of the ligand first binds to the ECD allowing (2) the N-terminus of the ligand to interact with the 7tm and activate the protein.​

Clinical Relevance

Because of GCGRs role in glucose homeostasis, it is a potential drug target for Type 2 diabetes. Specifically, molecules that antagoinze the glucagon receptor may be able to lower blood sugar levels.


References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, Wang C, Siu FY, Song G, Reedtz-Runge S, Pascal BD, Wu B, Potter CS, Zhou H, Griffin PR, Carragher B, Yang H, Wang MW, Stevens RC, Jiang H. Conformational states of the full-length glucagon receptor. Nat Commun. 2015 Jul 31;6:7859. doi: 10.1038/ncomms8859. PMID:26227798 doi:http://dx.doi.org/10.1038/ncomms8859
  4. PMID:PMC4321206
Personal tools