| Structural highlights
3pbp is a 12 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | |
NonStd Res: | |
Gene: | NUP82, YJL061W, J1135, HRB187 (Saccharomyces cerevisiae), NUP116, NSP116, YMR047C, YM9532.12C (Saccharomyces cerevisiae), NUP159, NUP158, RAT7, YIL115C (Saccharomyces cerevisiae) |
Resources: | FirstGlance, OCA, RCSB, PDBsum |
Function
[NU159_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. Active directional transport is assured by both, a Phe-Gly (FG) repeat affinity gradient for these transport factors across the NPC and a transport cofactor concentration gradient across the nuclear envelope (GSP1 and GSP2 GTPases associated predominantly with GTP in the nucleus, with GDP in the cytoplasm). NUP159 plays an important role in several nuclear export pathways including poly(A)+ RNA, pre-ribosome, and protein export.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [NU116_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. Active directional transport is assured by both, a Phe-Gly (FG) repeat affinity gradient for these transport factors across the NPC and a transport cofactor concentration gradient across the nuclear envelope (GSP1 and GSP2 GTPases associated predominantly with GTP in the nucleus, with GDP in the cytoplasm). NUP116 plays an important role in several nuclear export and import pathways including poly(A)+ RNA, tRNA, pre-ribosome, and protein transport.[14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]
Publication Abstract from PubMed
So far, only a few of the interactions between the approximately 30 nucleoporins comprising the modular structure of the nuclear pore complex have been defined at atomic resolution. Here we report the crystal structure, at 2.6 A resolution, of a heterotrimeric complex, composed of fragments of three cytoplasmically oriented nucleoporins of yeast: Nup82, Nup116, and Nup159. Our data show that the Nup82 fragment, representing more than the N-terminal half of the molecule, folds into an extensively decorated, seven-bladed beta-propeller that forms the centerpiece of this heterotrimeric complex and anchors both a C-terminal fragment of Nup116 and the C-terminal tail of Nup159. Binding between Nup116 and Nup82 is mutually reinforced via two loops, one emanating from the Nup82 beta-propeller and the other one from the beta-sandwich fold of Nup116, each contacting binding pockets in their counterparts. The Nup82-Nup159 interaction occurs through an amphipathic alpha-helix of Nup159, which is cradled in a large hydrophobic groove that is generated from several large surface decorations of the Nup82 beta-propeller. Although Nup159 and Nup116 fragments bind to the Nup82 beta-propeller in close vicinity, there are no direct contacts between them, consistent with the noncooperative binding that was detected biochemically. Extensive mutagenesis delineated hot-spot residues for these interactions. We also showed that the Nup82 beta-propeller binds to other yeast Nup116 family members, Nup145N, Nup100 and to the mammalian homolog, Nup98. Notably, each of the three nucleoporins contains additional nuclear pore complex binding sites, distinct from those that were defined here in the heterotrimeric Nup82*Nup159*Nup116 complex.
Structural and functional analysis of an essential nucleoporin heterotrimer on the cytoplasmic face of the nuclear pore complex.,Yoshida K, Seo HS, Debler EW, Blobel G, Hoelz A Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16571-6. Epub 2011 Sep 19. PMID:21930948[28]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hurwitz ME, Strambio-de-Castillia C, Blobel G. Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11241-5. PMID:9736720
- ↑ Belgareh N, Snay-Hodge C, Pasteau F, Dagher S, Cole CN, Doye V. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol Biol Cell. 1998 Dec;9(12):3475-92. PMID:9843582
- ↑ Seedorf M, Damelin M, Kahana J, Taura T, Silver PA. Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol Cell Biol. 1999 Feb;19(2):1547-57. PMID:9891088
- ↑ Hodge CA, Colot HV, Stafford P, Cole CN. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 1999 Oct 15;18(20):5778-88. PMID:10523319 doi:10.1093/emboj/18.20.5778
- ↑ Bailer SM, Balduf C, Katahira J, Podtelejnikov A, Rollenhagen C, Mann M, Pante N, Hurt E. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J Biol Chem. 2000 Aug 4;275(31):23540-8. PMID:10801828 doi:http://dx.doi.org/10.1074/jbc.M001963200
- ↑ Strasser K, Bassler J, Hurt E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J Cell Biol. 2000 Aug 21;150(4):695-706. PMID:10952996
- ↑ Allen NP, Huang L, Burlingame A, Rexach M. Proteomic analysis of nucleoporin interacting proteins. J Biol Chem. 2001 Aug 3;276(31):29268-74. Epub 2001 May 31. PMID:11387327 doi:http://dx.doi.org/10.1074/jbc.M102629200
- ↑ Gleizes PE, Noaillac-Depeyre J, Leger-Silvestre I, Teulieres F, Dauxois JY, Pommet D, Azum-Gelade MC, Gas N. Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex. J Cell Biol. 2001 Dec 10;155(6):923-36. Epub 2001 Dec 10. PMID:11739405 doi:http://dx.doi.org/10.1083/jcb.200108142
- ↑ Bailer SM, Balduf C, Hurt E. The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol Cell Biol. 2001 Dec;21(23):7944-55. PMID:11689687 doi:http://dx.doi.org/10.1128/MCB.21.23.7944-7955.2001
- ↑ Allen NP, Patel SS, Huang L, Chalkley RJ, Burlingame A, Lutzmann M, Hurt EC, Rexach M. Deciphering networks of protein interactions at the nuclear pore complex. Mol Cell Proteomics. 2002 Dec;1(12):930-46. PMID:12543930
- ↑ Denning DP, Patel SS, Uversky V, Fink AL, Rexach M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2450-5. Epub 2003 Feb 25. PMID:12604785 doi:10.1073/pnas.0437902100
- ↑ Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol. 2004 Mar;6(3):197-206. Epub 2004 Feb 22. PMID:15039779 doi:10.1038/ncb1097
- ↑ Weirich CS, Erzberger JP, Berger JM, Weis K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell. 2004 Dec 3;16(5):749-60. PMID:15574330 doi:10.1016/j.molcel.2004.10.032
- ↑ Fabre E, Boelens WC, Wimmer C, Mattaj IW, Hurt EC. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell. 1994 Jul 29;78(2):275-89. PMID:8044840
- ↑ Sharma K, Fabre E, Tekotte H, Hurt EC, Tollervey D. Yeast nucleoporin mutants are defective in pre-tRNA splicing. Mol Cell Biol. 1996 Jan;16(1):294-301. PMID:8524308
- ↑ Bailer SM, Siniossoglou S, Podtelejnikov A, Hellwig A, Mann M, Hurt E. Nup116p and nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor gle2p. EMBO J. 1998 Feb 16;17(4):1107-19. PMID:9463388 doi:http://dx.doi.org/10.1093/emboj/17.4.1107
- ↑ Seedorf M, Damelin M, Kahana J, Taura T, Silver PA. Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol Cell Biol. 1999 Feb;19(2):1547-57. PMID:9891088
- ↑ Ho AK, Shen TX, Ryan KJ, Kiseleva E, Levy MA, Allen TD, Wente SR. Assembly and preferential localization of Nup116p on the cytoplasmic face of the nuclear pore complex by interaction with Nup82p. Mol Cell Biol. 2000 Aug;20(15):5736-48. PMID:10891509
- ↑ Strasser K, Bassler J, Hurt E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J Cell Biol. 2000 Aug 21;150(4):695-706. PMID:10952996
- ↑ Stage-Zimmermann T, Schmidt U, Silver PA. Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol Biol Cell. 2000 Nov;11(11):3777-89. PMID:11071906
- ↑ Bailer SM, Balduf C, Katahira J, Podtelejnikov A, Rollenhagen C, Mann M, Pante N, Hurt E. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J Biol Chem. 2000 Aug 4;275(31):23540-8. PMID:10801828 doi:http://dx.doi.org/10.1074/jbc.M001963200
- ↑ Allen NP, Huang L, Burlingame A, Rexach M. Proteomic analysis of nucleoporin interacting proteins. J Biol Chem. 2001 Aug 3;276(31):29268-74. Epub 2001 May 31. PMID:11387327 doi:http://dx.doi.org/10.1074/jbc.M102629200
- ↑ Bailer SM, Balduf C, Hurt E. The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol Cell Biol. 2001 Dec;21(23):7944-55. PMID:11689687 doi:http://dx.doi.org/10.1128/MCB.21.23.7944-7955.2001
- ↑ Strawn LA, Shen T, Wente SR. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J Biol Chem. 2001 Mar 2;276(9):6445-52. Epub 2000 Dec 4. PMID:11104765 doi:http://dx.doi.org/10.1074/jbc.M008311200
- ↑ Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M. GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J Biol Chem. 2002 Dec 27;277(52):50597-606. Epub 2002 Oct 7. PMID:12372823 doi:10.1074/jbc.M209037200
- ↑ Denning DP, Patel SS, Uversky V, Fink AL, Rexach M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2450-5. Epub 2003 Feb 25. PMID:12604785 doi:10.1073/pnas.0437902100
- ↑ Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol. 2004 Mar;6(3):197-206. Epub 2004 Feb 22. PMID:15039779 doi:10.1038/ncb1097
- ↑ Yoshida K, Seo HS, Debler EW, Blobel G, Hoelz A. Structural and functional analysis of an essential nucleoporin heterotrimer on the cytoplasmic face of the nuclear pore complex. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16571-6. Epub 2011 Sep 19. PMID:21930948 doi:10.1073/pnas.1112846108
|