Structural highlights
3t54 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
Ligands: | , |
Related: | 3t7a, 3t99, 3t9a, 3t9b, 3t9c, 3t9d, 3t9e, 3t9f |
Gene: | PPIP5K2 (Homo sapiens) |
Activity: | Diphosphoinositol-pentakisphosphate kinase, with EC number 2.7.4.24 |
Resources: | FirstGlance, OCA, RCSB, PDBsum |
Function
[VIP2_HUMAN] Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at positions 1 or 3 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates at position 1 or 3 PP-InsP5, produced by IP6Ks from InsP6, to produce (PP)2-InsP4.[1] [2]
Publication Abstract from PubMed
Inositol pyrophosphates (such as IP7 and IP8) are multifunctional signaling molecules that regulate diverse cellular activities. Inositol pyrophosphates have 'high-energy' phosphoanhydride bonds, so their enzymatic synthesis requires that a substantial energy barrier to the transition state be overcome. Additionally, inositol pyrophosphate kinases can show stringent ligand specificity, despite the need to accommodate the steric bulk and intense electronegativity of nature's most concentrated three-dimensional array of phosphate groups. Here we examine how these catalytic challenges are met by describing the structure and reaction cycle of an inositol pyrophosphate kinase at the atomic level. We obtained crystal structures of the kinase domain of human PPIP5K2 complexed with nucleotide cofactors and either substrates, product or a MgF(3)(-) transition-state mimic. We describe the enzyme's conformational dynamics, its unprecedented topological presentation of nucleotide and inositol phosphate, and the charge balance that facilitates partly associative in-line phosphoryl transfer.
Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding.,Wang H, Falck JR, Hall TM, Shears SB Nat Chem Biol. 2011 Nov 27. doi: 10.1038/nchembio.733. PMID:22119861[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Fridy PC, Otto JC, Dollins DE, York JD. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem. 2007 Oct 19;282(42):30754-62. Epub 2007 Aug 9. PMID:17690096 doi:http://dx.doi.org/M704656200
- ↑ Choi JH, Williams J, Cho J, Falck JR, Shears SB. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem. 2007 Oct 19;282(42):30763-75. Epub 2007 Aug 16. PMID:17702752 doi:http://dx.doi.org/M704655200
- ↑ Wang H, Falck JR, Hall TM, Shears SB. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat Chem Biol. 2011 Nov 27. doi: 10.1038/nchembio.733. PMID:22119861 doi:10.1038/nchembio.733