| Structural highlights
Disease
[MDM2_HUMAN] Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding.
Function
[MDM2_HUMAN] E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
Publication Abstract from PubMed
We recently reported on the discovery of AMG 232, a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. AMG 232 is being evaluated in human clinical trials for cancer. Continued exploration of the N-alkyl substituent of this series, in an effort to optimize interactions with the MDM2 glycine-58 shelf region, led to the discovery of sulfonamides such as compounds 31 and 38 that have similar potency, hepatocyte stability and rat pharmacokinetic properties to AMG 232.
Optimization beyond AMG 232: discovery and SAR of sulfonamides on a piperidinone scaffold as potent inhibitors of the MDM2-p53 protein-protein interaction.,Wang Y, Zhu J, Liu JJ, Chen X, Mihalic J, Deignan J, Yu M, Sun D, Kayser F, McGee LR, Lo MC, Chen A, Zhou J, Ye Q, Huang X, Long AM, Yakowec P, Oliner JD, Olson SH, Medina JC Bioorg Med Chem Lett. 2014 Aug 15;24(16):3782-5. doi: 10.1016/j.bmcl.2014.06.073., Epub 2014 Jul 1. PMID:25042256[12]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Girnita L, Girnita A, Larsson O. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8247-52. Epub 2003 Jun 23. PMID:12821780 doi:10.1073/pnas.1431613100
- ↑ Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004 Mar 26;13(6):879-86. PMID:15053880
- ↑ Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol. 2004 Jul;6(7):665-72. Epub 2004 Jun 13. PMID:15195100 doi:10.1038/ncb1147
- ↑ Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005 Dec 9;20(5):699-708. PMID:16337594 doi:10.1016/j.molcel.2005.10.017
- ↑ Brady M, Vlatkovic N, Boyd MT. Regulation of p53 and MDM2 activity by MTBP. Mol Cell Biol. 2005 Jan;25(2):545-53. PMID:15632057 doi:25/2/545
- ↑ Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 2007 Feb 21;26(4):976-86. Epub 2007 Feb 8. PMID:17290220 doi:10.1038/sj.emboj.7601567
- ↑ Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb;10(2):166-72. doi: 10.1038/embor.2008.231. Epub 2008 Dec 19. PMID:19098711 doi:10.1038/embor.2008.231
- ↑ Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene. 2009 Apr 2;28(13):1616-25. doi: 10.1038/onc.2009.5. Epub 2009 Feb 16. PMID:19219073 doi:10.1038/onc.2009.5
- ↑ Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K. ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem. 2010 Feb 12;285(7):4909-19. doi: 10.1074/jbc.M109.042341. Epub 2009 , Dec 4. PMID:19965871 doi:10.1074/jbc.M109.042341
- ↑ Gilmore-Hebert M, Ramabhadran R, Stern DF. Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways. Mol Cancer Res. 2010 Oct;8(10):1388-98. doi: 10.1158/1541-7786.MCR-10-0042. Epub , 2010 Sep 21. PMID:20858735 doi:10.1158/1541-7786.MCR-10-0042
- ↑ Fu X, Yucer N, Liu S, Li M, Yi P, Mu JJ, Yang T, Chu J, Jung SY, O'Malley BW, Gu W, Qin J, Wang Y. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4579-84. doi:, 10.1073/pnas.0912094107. Epub 2010 Feb 19. PMID:20173098 doi:10.1073/pnas.0912094107
- ↑ Wang Y, Zhu J, Liu JJ, Chen X, Mihalic J, Deignan J, Yu M, Sun D, Kayser F, McGee LR, Lo MC, Chen A, Zhou J, Ye Q, Huang X, Long AM, Yakowec P, Oliner JD, Olson SH, Medina JC. Optimization beyond AMG 232: discovery and SAR of sulfonamides on a piperidinone scaffold as potent inhibitors of the MDM2-p53 protein-protein interaction. Bioorg Med Chem Lett. 2014 Aug 15;24(16):3782-5. doi: 10.1016/j.bmcl.2014.06.073., Epub 2014 Jul 1. PMID:25042256 doi:http://dx.doi.org/10.1016/j.bmcl.2014.06.073
|