1kv6
From Proteopedia
X-ray structure of the orphan nuclear receptor ERR3 ligand-binding domain in the constitutively active conformation
Structural highlights
Disease[NCOA1_HUMAN] Note=A chromosomal aberration involving NCOA1 is a cause of rhabdomyosarcoma. Translocation t(2;2)(q35;p23) with PAX3 generates the NCOA1-PAX3 oncogene consisting of the N-terminus part of PAX3 and the C-terminus part of NCOA1. The fusion protein acts as a transcriptional activator. Rhabdomyosarcoma is the most common soft tissue carcinoma in childhood, representing 5-8% of all malignancies in children. Function[ERR3_HUMAN] Orphan receptor that acts as transcription activator in the absence of bound ligand. Binds specifically to an estrogen response element and activates reporter genes controlled by estrogen response elements (By similarity).[1] [2] [3] [NCOA1_HUMAN] Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3.[4] [5] [6] [7] [8] [9] [10] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of the ligand binding domain (LBD) of the estrogen-related receptor 3 (ERR3) complexed with a steroid receptor coactivator-1 (SRC-1) peptide reveals a transcriptionally active conformation in absence of any ligand. The structure explains why estradiol does not bind ERRs with significant affinity. Docking of the previously reported ERR antagonists, diethylstilbestrol and 4-hydroxytamoxifen, requires structural rearrangements enlarging the ligand binding pocket that can only be accommodated with an antagonist LBD conformation. Mutant receptors in which the ligand binding cavity is filled up by bulkier side chains still interact with SRC-1 in vitro and are transcriptionally active in vivo, but are no longer efficiently inactivated by diethylstilbestrol or 4-hydroxytamoxifen. These results provide structural and functional evidence for ligand-independent transcriptional activation by ERR3. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3.,Greschik H, Wurtz JM, Sanglier S, Bourguet W, van Dorsselaer A, Moras D, Renaud JP Mol Cell. 2002 Feb;9(2):303-13. PMID:11864604[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Bourguet, W | Dorsselaer, A van | Greschik, H | Moras, D | Renaud, J P | SPINE, Structural Proteomics in Europe | Sanglier, S | Wurtz, J M | Gene regulation | Spine | Structural genomic | Structural proteomics in europe | Transcriptionally active conformation in absence of ligand