Structural highlights
Function
[VIP2_HUMAN] Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at positions 1 or 3 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates at position 1 or 3 PP-InsP5, produced by IP6Ks from InsP6, to produce (PP)2-InsP4.[1] [2]
Publication Abstract from PubMed
To synthesise stabilised mimics of InsP8, the most phosphorylated inositol phosphate signalling molecule in Nature, we replaced its two diphosphate (PP) groups with either phosphonoacetate (PA) or methylenebisphosphonate (PCP) groups. Utility of the PA and PCP analogues was verified by structural and biochemical analyses of their interactions with enzymes of InsP8 metabolism.
Synthetic tools for studying the chemical biology of InsP8.,Riley AM, Wang H, Shears SB, L Potter BV Chem Commun (Camb). 2015 Jul 23;51(63):12605-8. doi: 10.1039/c5cc05017k. PMID:26153667[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Fridy PC, Otto JC, Dollins DE, York JD. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem. 2007 Oct 19;282(42):30754-62. Epub 2007 Aug 9. PMID:17690096 doi:http://dx.doi.org/M704656200
- ↑ Choi JH, Williams J, Cho J, Falck JR, Shears SB. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem. 2007 Oct 19;282(42):30763-75. Epub 2007 Aug 16. PMID:17702752 doi:http://dx.doi.org/M704655200
- ↑ Riley AM, Wang H, Shears SB, L Potter BV. Synthetic tools for studying the chemical biology of InsP8. Chem Commun (Camb). 2015 Jul 23;51(63):12605-8. doi: 10.1039/c5cc05017k. PMID:26153667 doi:http://dx.doi.org/10.1039/c5cc05017k