Structural highlights
Disease
[DYHC1_MOUSE] Defects in Dync1h1 are the cause of the 'Legs at odd angles' (LOA) phenotype, an autosomal dominant trait where affected animals display unusual twisting of the body and clenching of the hindlimbs when suspended by the tail. Heterozygotes suffer age-related progressive loss of muscle tone and locomotor ability without major reduction in life-span while homozygotes show a more severe phenotype with an inability to move or feed, and die within 24 hours of birth. LOA mutants display defects in migration of facial motor neuron cell bodies and impaired retrograde transport in spinal cord motor neurons. Defects in Dync1h1 are the cause of the Cramping 1 (Cra1) phenotype, an autosomal dominant trait where affected animals display unusual twisting of the body and clenching of the hindlimbs when suspended by the tail. Heterozygotes suffer age-related progressive loss of muscle tone and locomotor ability without major reduction in life-span while homozygotes show a more severe phenotype with an inability to move or feed, and die within 24 hours of birth.
Function
[DYHC1_MOUSE] Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. [TBB_PIG] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [TBA1B_PIG] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain.