This is a default text for your page '. Click above on edit this page' to modify. Be careful with the < and > signs.
You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.
Overview
Metallo-β-lactamases are known for the resistance of pathogenic bacterial strains to penicillins and other related antibiotics. This is caused by their serine active-site. The protein contains a zinc ion, along with 227 amino acid residues. What makes this protein unique, is the αββα sandwich. The internal molecular summary shows a 2-fold axis passing through the zinc ion. Harmless strains of Bacillus cereus were only known to produce two similar monomeric metallo-β-lactamases. A third metallo-β-lactamase was discovered and produced by Xanthomonas maltophilia, did not raise concerns in the medical community. Recent findings show that the resistance to carbapenems in an increasing number of clinically noxious strains is caused by the synthesis of Zinc containing β-lactamases.
Function
This protein catalyzes the hydrolysis of a large number of penicillins, cephalosporins, and almost all β-lactams. It hydrolyse carbapenems efficiently, while it usually escapes the activity of the active-site serine enzymes. This can be threatening to the way we fight diseases, because the gene is most likely to be plasmid-borne, which would make it easy to spread to other populations of pathogenic species.
Disease
Relevance
Structural highlights
This is a sample scene created with SAT to by Group, and another to make of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.