| Structural highlights
6s7o is a 8 chain structure with sequence from [1] and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Ligands: | , , , , , , |
| Activity: | Dolichyl-diphosphooligosaccharide--protein glycotransferase, with EC number 2.4.99.18 |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[STT3A_HUMAN] STT3A-CDG. The disease is caused by mutations affecting the gene represented in this entry. [RPN1_HUMAN] Acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2).
Function
[RPN2_HUMAN] Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity.[UniProtKB:F1PCT7] [TM258_HUMAN] Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity (PubMed:26472760, PubMed:27974209). Involved in ER homeostasis in the colonic epithelium (By similarity).[UniProtKB:P61166][1] [2] [A0A024RAD5_HUMAN] Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER).[RuleBase:RU361142] [OST4_HUMAN] May be involved in N-glycosylation through its association with N-oligosaccharyl transferase (By similarity). [OSTC_HUMAN] Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. May be involved in N-glycosylation of APP (amyloid-beta precursor protein). Can modulate gamma-secretase cleavage of APP by enhancing endoprotelysis of PSEN1.[3] [STT3A_HUMAN] Catalytic subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. This subunit contains the active site and the acceptor peptide and donor lipid-linked oligosaccharide (LLO) binding pockets (By similarity). STT3A is present in the majority of OST complexes and mediates cotranslational N-glycosylation of most sites on target proteins, while STT3B-containing complexes are required for efficient post-translational glycosylation and mediate glycosylation of sites that have been skipped by STT3A (PubMed:19167329).[UniProtKB:P39007][4] [DAD1_HUMAN] Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation (PubMed:22467853). N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity (By similarity). Required for the assembly of both SST3A- and SS3B-containing OST complexes. Loss of the DAD1 protein triggers apoptosis (PubMed:22467853).[UniProtKB:E2R4X3][5] [RPN1_HUMAN] Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity.[UniProtKB:E2RQ08]
References
- ↑ Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015 Nov 27;350(6264):1092-6. doi: 10.1126/science.aac7557. Epub 2015, Oct 15. PMID:26472760 doi:http://dx.doi.org/10.1126/science.aac7557
- ↑ Graham DB, Lefkovith A, Deelen P, de Klein N, Varma M, Boroughs A, Desch AN, Ng ACY, Guzman G, Schenone M, Petersen CP, Bhan AK, Rivas MA, Daly MJ, Carr SA, Wijmenga C, Xavier RJ. TMEM258 Is a Component of the Oligosaccharyltransferase Complex Controlling ER Stress and Intestinal Inflammation. Cell Rep. 2016 Dec 13;17(11):2955-2965. doi: 10.1016/j.celrep.2016.11.042. PMID:27974209 doi:http://dx.doi.org/10.1016/j.celrep.2016.11.042
- ↑ Wilson CM, Magnaudeix A, Yardin C, Terro F. DC2 and keratinocyte-associated protein 2 (KCP2), subunits of the oligosaccharyltransferase complex, are regulators of the gamma-secretase-directed processing of amyloid precursor protein (APP). J Biol Chem. 2011 Sep 9;286(36):31080-91. doi: 10.1074/jbc.M111.249748. Epub 2011, Jul 18. PMID:21768116 doi:http://dx.doi.org/10.1074/jbc.M111.249748
- ↑ Ruiz-Canada C, Kelleher DJ, Gilmore R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell. 2009 Jan 23;136(2):272-83. doi: 10.1016/j.cell.2008.11.047. PMID:19167329 doi:10.1016/j.cell.2008.11.047
- ↑ Roboti P, High S. The oligosaccharyltransferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation. J Cell Sci. 2012 Jul 15;125(Pt 14):3474-84. doi: 10.1242/jcs.103952. Epub 2012, Mar 30. PMID:22467853 doi:http://dx.doi.org/10.1242/jcs.103952
|