Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The three-dimensional crystal structure of catalase from Micrococcus lysodeikticus has been solved by multiple isomorphous replacement and refined at 1.5 A resolution. The subunit of the tetrameric molecule of 222 symmetry consists of a single polypeptide chain of about 500 amino acid residues and one haem group. The crystals belong to space group P4(2)2(1)2 with unit cell parameters a = b = 106.7 A, c = 106.3 A, and there is one subunit of the tetramer per asymmetric unit. The amino acid sequence has been tentatively determined by computer graphics model building and comparison with the known three-dimensional structure of beef liver catalase and sequences of several other catalases. The atomic model has been refined by Hendrickson and Konnert's least-squares minimisation against 94,315 reflections between 8 A and 1.5 A. The final model consists of 3,977 non-hydrogen atoms of the protein and haem group, 426 water molecules and one sulphate ion. The secondary and tertiary structures of the bacterial catalase have been analyzed and a comparison with the structure of beef liver catalase has been made.
Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution.,Murshudov GN, Melik-Adamyan WR, Grebenko AI, Barynin VV, Vagin AA, Vainshtein BK, Dauter Z, Wilson KS FEBS Lett. 1992 Nov 9;312(2-3):127-31. PMID:1426241[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Murshudov GN, Melik-Adamyan WR, Grebenko AI, Barynin VV, Vagin AA, Vainshtein BK, Dauter Z, Wilson KS. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Lett. 1992 Nov 9;312(2-3):127-31. PMID:1426241