6vum
From Proteopedia
Structure of nevanimibe-bound human tetrameric ACAT1
Structural highlights
Function[SOAT1_HUMAN] Catalyzes the formation of fatty acid-cholesterol esters, which are less soluble in membranes than cholesterol. Plays a role in lipoprotein assembly and dietary cholesterol absorption. In addition to its acyltransferase activity, it may act as a ligase. Publication Abstract from PubMedCholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer's disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases. Structure of nevanimibe-bound tetrameric human ACAT1.,Long T, Sun Y, Hassan A, Qi X, Li X Nature. 2020 May;581(7808):339-343. doi: 10.1038/s41586-020-2295-8. Epub 2020 May, 13. PMID:32433613[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|