1qsp
From Proteopedia
CRYSTAL STRUCTURE OF THE YEAST PHOSPHORELAY PROTEIN YPD1
Structural highlights
Function[YPD1_YEAST] Phosphorelay intermediate protein that is part of the branched SLN1-YPD1-SKN7/SSK1 two-component regulatory system, which controls activity of the HOG1 pathway and gene expression in response to changes in the osmolarity of the extracellular environment. Catalyzes the phosphoryl group transfer from the membrane-bound osmosensing histidine kinase SLN1 to two distinct response regulator proteins, SSK1 in the cytoplasm, and transcription factor SKN7 in the nucleus.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn Saccharomyces cerevisiae, the SLN1-YPD1-SSK1 phosphorelay system controls a downstream mitogen-activated protein (MAP) kinase in response to hyperosmotic stress. YPD1 functions as a phospho-histidine protein intermediate which is required for phosphoryl group transfer from the sensor kinase SLN1 to the response regulator SSK1. In addition, YPD1 mediates phosphoryl transfer from SLN1 to SKN7, the only other response regulator protein in yeast which plays a role in response to oxidative stress and cell wall biosynthesis.The X-ray structure of YPD1 was solved at a resolution of 2.7 A by conventional multiple isomorphous replacement with anomalous scattering. The tertiary structure of YPD1 consists of six alpha-helices and a short 310-helix. A four-helix bundle comprises the central core of the molecule and contains the histidine residue that is phosphorylated. Structure-based comparisons of YPD1 to other proteins having a similar function, such as the Escherichia coli ArcB histidine-containing phosphotransfer (HPt) domain and the P1 domain of the CheA kinase, revealed that the helical bundle and several structural features around the active-site histidine residue are conserved between the prokaryotic and eukaryotic kingdoms.Despite limited amino acid sequence homology among HPt domains, our analysis of YPD1 as a prototypical family member, indicates that these phosphotransfer domains are likely to share a similar fold and common features with regard to response regulator binding and mechanism for histidine-aspartate phosphoryl transfer. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1.,Xu Q, West AH J Mol Biol. 1999 Oct 8;292(5):1039-50. PMID:10512701[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|