1z8u
From Proteopedia
Crystal structure of oxidized alpha hemoglobin bound to AHSP
Structural highlights
Disease[HBA_HUMAN] Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131]. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978]. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] Function[AHSP_HUMAN] Acts as a chaperone to prevent the harmful aggregation of alpha-hemoglobin during normal erythroid cell development. Specifically protects free alpha-hemoglobin from precipitation. It is predicted to modulate pathological states of alpha-hemoglobin excess such as beta-thalassemia.[3] [HBA_HUMAN] Involved in oxygen transport from the lung to the various peripheral tissues. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe synthesis of haemoglobin A (HbA) is exquisitely coordinated during erythrocyte development to prevent damaging effects from individual alpha- and beta-subunits. The alpha-haemoglobin-stabilizing protein (AHSP) binds alpha-haemoglobin (alphaHb), inhibits the ability of alphaHb to generate reactive oxygen species and prevents its precipitation on exposure to oxidant stress. The structure of AHSP bound to ferrous alphaHb is thought to represent a transitional complex through which alphaHb is converted to a non-reactive, hexacoordinate ferric form. Here we report the crystal structure of this ferric alphaHb-AHSP complex at 2.4 A resolution. Our findings reveal a striking bis-histidyl configuration in which both the proximal and the distal histidines coordinate the haem iron atom. To attain this unusual conformation, segments of alphaHb undergo drastic structural rearrangements, including the repositioning of several alpha-helices. Moreover, conversion to the ferric bis-histidine configuration strongly and specifically inhibits redox chemistry catalysis and haem loss from alphaHb. The observed structural changes, which impair the chemical reactivity of haem iron, explain how AHSP stabilizes alphaHb and prevents its damaging effects in cells. Structure of oxidized alpha-haemoglobin bound to AHSP reveals a protective mechanism for haem.,Feng L, Zhou S, Gu L, Gell DA, Mackay JP, Weiss MJ, Gow AJ, Shi Y Nature. 2005 Jun 2;435(7042):697-701. PMID:15931225[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Large Structures | Feng, L | Gell, D A | Gow, A J | Gu, L | Mackay, J P | Shi, Y | Weiss, M J | Zhou, S | Ahsp | Alpha haemoglobin | Electron transport | Interaction | Oxidation