3asn
From Proteopedia
Bovine heart cytochrome C oxidase in the fully oxidized state measured at 1.7470 angstrom wavelength
Structural highlights
Function[COX5B_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX7B_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX3_BOVIN] Subunits I, II and III form the functional core of the enzyme complex. [CX6A2_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX6C_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX2_BOVIN] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. [COX7C_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [CX6B1_BOVIN] Connects the two COX monomers into the physiological dimeric form. [COX1_BOVIN] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. [COX41_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [CX7A1_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX8B_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX5A_BOVIN] This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. Publication Abstract from PubMedFully oxidized cytochrome c oxidase (CcO) under enzymatic turnover is capable of pumping protons, while fully oxidized CcO as isolated is not able to do so upon one-electron reduction. The functional difference is expected to be a consequence of structural differences: [Fe(3+)-OH(-)] under enzymatic turnover versus [Fe(3+)-O(2)(2-)-Cu(2+)] for the as-isolated CcO. However, the electron density for O(2)(2-) is equally assignable to Cl(-). An anomalous dispersion analysis was performed in order to conclusively demonstrate the absence of Cl(-) between the Fe(3+) and Cu(2+). Thus, the peroxide moiety receives electron equivalents from cytochrome c without affecting the oxidation states of the metal sites. The metal-site reduction is coupled to the proton pump. Distinguishing between Cl- and O2(2-) as the bridging element between Fe3+ and Cu2+ in resting-oxidized cytochrome c oxidase.,Suga M, Yano N, Muramoto K, Shinzawa-Itoh K, Maeda T, Yamashita E, Tsukihara T, Yoshikawa S Acta Crystallogr D Biol Crystallogr. 2011 Aug;67(Pt 8):742-4. Epub 2011 Jul 12. PMID:21795816[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|