3r8i
From Proteopedia
Crystal Structure of PPARgamma with an achiral ureidofibrate derivative (RT86)
Structural highlights
Disease[PPARG_HUMAN] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. Function[PPARG_HUMAN] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6] Publication Abstract from PubMedA series of ureidofibrate-like derivatives was prepared and assayed for their PPAR functional activity. A calorimetric approach was used to characterize PPARgamma-ligand interactions, and docking experiments and X-ray studies were performed to explain the observed potency and efficacy. R-1 and S-1 were selected to evaluate several aspects of their biological activity. In an adipogenic assay, both enantiomers increased the expression of PPARgamma target genes and promoted the differentiation of 3T3-L1 fibroblasts to adipocytes. In vivo administration of these compounds to insulin resistant C57Bl/6J mice fed a high fat diet reduced visceral fat content and body weight. Examination of different metabolic parameters showed that R-1 and S-1 are insulin sensitizers. Notably, they also enhanced the expression of hepatic PPARalpha target genes indicating that their in vivo effects stemmed from an activation of both PPARalpha and gamma. Finally, the capability of R-1 and S-1 to inhibit cellular proliferation in colon cancer cell lines was also evaluated. Synthesis, Characterization and Biological Evaluation of Ureidofibrate-Like Derivatives Endowed with Peroxisome Proliferator-Activated Receptor Activity.,Porcelli L, Gilardi F, Laghezza A, Piemontese L, Mitro N, Azzariti A, Altieri F, Cervoni L, Fracchiolla G, Giudici M, Guerrini U, Lavecchia A, Montanari R, Di Giovanni C, Paradiso A, Pochetti G, Simone GM, Tortorella P, Crestani M, Loiodice F J Med Chem. 2011 Dec 2. PMID:22081932[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Crestani, M | Fracchiolla, G | Laghezza, A | Lavecchia, A | Loiodice, F | Montanari, R | Novellino, E | Pochetti, G | Activator | Bundle of alpha-helice | Diabetes mellitus | Dna binding | Nucleus | Obesity | Phosphorylation | Protein-dna complex | Small four-stranded beta-sheet | Transcription | Transcription regulation