3u5v
From Proteopedia
Crystal structure of Max-E47
| 
 Structural highlights
 Function[MAX_MOUSE] Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MYC or MAD which recognizes the core sequence 5'-CAC[GA]TG-3'. The MYC-MAX complex is a transcriptional activator, whereas the MAD-MAX complex is a repressor. CpG methylation of the recognition site greatly inhibits DNA binding, suggesting that DNA methylation may regulate the MYC/MAX complex in vivo. May repress transcription via the recruitment of a chromatin remodeling complex containing H3 'Lys-9' histone methyltransferase activity. Publication Abstract from PubMedMax-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 A resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts. Crystal structure of the minimalist max-e47 protein chimera.,Ahmadpour F, Ghirlando R, De Jong AT, Gloyd M, Shin JA, Guarne A PLoS One. 2012;7(2):e32136. Epub 2012 Feb 28. PMID:22389683[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
 
 
 | ||||||||||||||||||||
