4hee
From Proteopedia
Crystal structure of PPARgamma in complex with compound 13
Structural highlights
Disease[PPARG_HUMAN] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. [NCOA1_HUMAN] Note=A chromosomal aberration involving NCOA1 is a cause of rhabdomyosarcoma. Translocation t(2;2)(q35;p23) with PAX3 generates the NCOA1-PAX3 oncogene consisting of the N-terminus part of PAX3 and the C-terminus part of NCOA1. The fusion protein acts as a transcriptional activator. Rhabdomyosarcoma is the most common soft tissue carcinoma in childhood, representing 5-8% of all malignancies in children. Function[PPARG_HUMAN] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6] [NCOA1_HUMAN] Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3.[7] [8] [9] [10] [11] [12] [13] Publication Abstract from PubMedIdentification of a series of imidazo[4,5-c]pyridin-4-one derivatives that act as dual angiotensin II type 1 (AT1) receptor antagonists and peroxisome proliferator-activated receptor-gamma (PPARgamma) partial agonists is described. Starting from a known AT1 antagonist template, conformational restriction was introduced by incorporation of an indane ring that when combined with appropriate substitution at the imidazo[4,5-c]pyridin-4-one provided novel series 5 possessing the desired dual activity. The mode of interaction of this series with PPARgamma was corroborated through the X-ray crystal structure of 12b bound to the human PPARgamma ligand binding domain. Modulation of activity at both receptors through substitution at the pyridone nitrogen led to the identification of potent dual AT1 antagonists/PPARgamma partial agonists. Among them, 21b was identified possessing potent dual pharmacology (AT1 IC(50) = 7 nM; PPARgamma EC(50) = 295 nM, 27% max) and good ADME properties. Design, synthesis, and evaluation of imidazo[4,5-c]pyridin-4-one derivatives with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-gamma.,Casimiro-Garcia A, Heemstra RJ, Bigge CF, Chen J, Ciske FA, Davis JA, Ellis T, Esmaeil N, Flynn D, Han S, Jalaie M, Ohren JF, Powell NA Bioorg Med Chem Lett. 2013 Feb 1;23(3):767-72. doi: 10.1016/j.bmcl.2012.11.088., Epub 2012 Dec 1. PMID:23265881[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|