| Structural highlights
1l19 is a 1 chain structure with sequence from Bpt4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Related: | 2lzm, 1l01, 1l02, 1l03, 1l04, 1l05, 1l06, 1l07, 1l08, 1l09, 1l10, 1l11, 1l12, 1l13, 1l14, 1l15, 1l16, 1l17, 1l18, 1l20, 1l21, 1l22, 1l23, 1l24, 1l25, 1l26, 1l27, 1l28, 1l29, 1l30, 1l31, 1l32, 1l33, 1l34, 1l35, 1l36 |
Activity: | Lysozyme, with EC number 3.2.1.17 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[LYS_BPT4] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Two different genetically engineered amino-acid substitutions designed to interact with alpha-helix dipoles in T4 lysozyme are shown to increase the thermal stability of the protein. Crystallographic analyses of the mutant lysozyme structures suggest that the stabilization is due to electrostatic interaction and does not require precise hydrogen bonding between the substituted amino acid and the end of the alpha-helix.
Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles.,Nicholson H, Becktel WJ, Matthews BW Nature. 1988 Dec 15;336(6200):651-6. PMID:3200317[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Nicholson H, Becktel WJ, Matthews BW. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651-6. PMID:3200317 doi:http://dx.doi.org/10.1038/336651a0
|