Structural highlights
Publication Abstract from PubMed
Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 A resolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.
Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG.,Tan XF, Dai YN, Zhou K, Jiang YL, Ren YM, Chen Y, Zhou CZ Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):873-81. doi:, 10.1107/S1399004715001716. Epub 2015 Mar 27. PMID:25849398[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Tan XF, Dai YN, Zhou K, Jiang YL, Ren YM, Chen Y, Zhou CZ. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG. Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):873-81. doi:, 10.1107/S1399004715001716. Epub 2015 Mar 27. PMID:25849398 doi:http://dx.doi.org/10.1107/S1399004715001716