4w29
From Proteopedia
70S ribosome translocation intermediate containing elongation factor EFG/GDP/fusidic acid, mRNA, and tRNAs trapped in the AP/AP pe/E chimeric hybrid state.
Structural highlights
Function[RL13_THET2] This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (By similarity). [RL11_THET2] This protein binds directly to 23S ribosomal RNA (By similarity). [RS8_THET2] One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (By similarity). [RL2_THET2] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity). [RS3_THET2] Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (By similarity). [RS18_THET2] Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit (By similarity). [RS2_THET2] Spans the head-body hinge region of the 30S subunit. Is loosely associated with the 30S subunit (By similarity). [RS19_THET2] Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA (By similarity). [RL6_THET2] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center (By similarity). [RS17_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform and body of the 30S subunit by bringing together and stabilizing interactions between several different RNA helices. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_01345] Deletion of the protein leads to an increased generation time and a temperature-sensitive phenotype.[HAMAP-Rule:MF_01345] [RL24_THET2] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity). One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit (By similarity). [RL3_THET2] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity). [A0A1J1EJ43_THETH] Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release.[HAMAP-Rule:MF_01318] Protein L1 is also a translational repressor protein, it controls the translation of the L11 operon by binding to its mRNA.[HAMAP-Rule:MF_01318] [RL4_THET8] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01328_B] Forms part of the polypeptide exit tunnel (By similarity).[HAMAP-Rule:MF_01328_B] This protein can be incorporated into E.coli ribosomes in vivo, which resulted in decreased peptidyltransferase (Ptase) activity of the hybrid ribosomes. The hybrid 50S subunits associate less well with 30S subunits to form the ribosome.[HAMAP-Rule:MF_01328_B] [RL20_THET2] Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (By similarity). [RS15_THET2] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA (By similarity). Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome (By similarity). [EFG_THET2] Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (By similarity). [RS11_THET2] Located on the upper part of the platform of the 30S subunit, where it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (By similarity). [RL15_THET2] Binds to the 23S rRNA (By similarity). [RS12_THET2] With S4 and S5 plays an important role in translational accuracy (By similarity). Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit (By similarity). [RL34_THET8] Found on the solvent side of the large subunit.[HAMAP-Rule:MF_00391] [RL22_THET2] This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome (By similarity). [RL27_THET8] Found on the solvent side of the large subunit.[HAMAP-Rule:MF_00539] [RS14Z_THET2] Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site (By similarity). [RL5_THETH] This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (forming bridge B1b) connecting the head of the 30S subunit to the top of the 50S subunit. The bridge itself contacts the P site tRNA and is implicated in movement during ribosome translocation. Also contacts the P site tRNA independently of the intersubunit bridge; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs (By similarity).[HAMAP-Rule:MF_01333_B] [RS7_THET2] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (By similarity). [RL31_THET2] Binds the 23S rRNA (By similarity). [RL19_THET8] Contacts the 16S rRNA of the 30S subunit (part of bridge B6), connecting the 2 subunits.[HAMAP-Rule:MF_00402] [RS4_THET2] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the body and platform of the 30S subunit (By similarity). [RL16_THET2] Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs (By similarity). [RS10_THET2] Involved in the binding of tRNA to the ribosomes (By similarity). [RL32_THET8] Found on the solvent side of the large subunit.[HAMAP-Rule:MF_00340] [RL21_THET2] This protein binds to 23S rRNA in the presence of protein L20 (By similarity). [RS13_THET2] Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites (By similarity). [RS16_THET2] Binds to the lower part of the body of the 30S subunit, where it stabilizes two of its domains (By similarity). [RS9_THET8] Part of the top of the head of the 30S subunit. The C-terminal region penetrates the head emerging in the P-site where it contacts tRNA.[HAMAP-Rule:MF_00532_B] [RL18_THET2] This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance (By similarity). [RS5_THET2] With S4 and S12 plays an important role in translational accuracy (By similarity). Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body (By similarity). [A0A1J1EU54_THETH] Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome.[HAMAP-Rule:MF_01367][RuleBase:RU003950] [RL7_THET2] Seems to be the binding site for several of the factors involved in protein synthesis and appears to be essential for accurate translation (By similarity). [RL25_THET2] This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance (By similarity). [RL23_THET2] One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome (By similarity). [RS20_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the bottom of the body of the 30S subunit, by binding to several RNA helices of the 16S rRNA.[HAMAP-Rule:MF_00500] [RS6_THET2] Located on the outer edge of the platform on the body of the 30S subunit (By similarity). Publication Abstract from PubMedCoupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation.,Zhou J, Lancaster L, Donohue JP, Noller HF Science. 2014 Sep 5;345(6201):1188-91. doi: 10.1126/science.1255030. PMID:25190797[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|