Structural highlights
Publication Abstract from PubMed
Naturally competent bacteria encode sophisticated protein machinery for the uptake and translocation of exogenous DNA into the cell. If this DNA is integrated into the bacterial genome, the bacterium is said to be naturally transformed. Most competent bacterial species utilise type IV pili for the initial DNA uptake step. These proteinaceous cell-surface structures are composed of thousands of pilus subunits (pilins), designated as major or minor according to their relative abundance in the pilus. Here, we show that the minor pilin FimT plays an important role in the natural transformation of Legionella pneumophila. We use NMR spectroscopy, in vitro DNA binding assays and in vivo transformation assays to understand the molecular basis of FimT's role in this process. FimT binds to DNA via an electropositive patch, rich in arginines, several of which are well-conserved and located in a conformationally flexible C-terminal tail. FimT orthologues from other Gammaproteobacteria share the ability to bind to DNA. Our results suggest that FimT plays an important role in DNA uptake in a wide range of competent species.
The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation.,Braus SAG, Short FL, Holz S, Stedman MJM, Gossert AD, Hospenthal MK Nat Commun. 2022 Mar 4;13(1):1065. doi: 10.1038/s41467-022-28690-1. PMID:35246533[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Braus SAG, Short FL, Holz S, Stedman MJM, Gossert AD, Hospenthal MK. The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation. Nat Commun. 2022 Mar 4;13(1):1065. doi: 10.1038/s41467-022-28690-1. PMID:35246533 doi:http://dx.doi.org/10.1038/s41467-022-28690-1