|  |   Structural highlights   Disease [XPC_HUMAN] Defects in XPC are a cause of xeroderma pigmentosum complementation group C (XP-C) [MIM:278720]; also known as xeroderma pigmentosum III (XP3). XP-C is a rare human autosomal recessive disease characterized by solar sensitivity, high predisposition for developing cancers on areas exposed to sunlight and, in some cases, neurological abnormalities.[1] [2] [3] [4] [5]  
   Function [CETN2_HUMAN] Plays a fundamental role in microtubule-organizing center structure and function. Required for centriole duplication and correct spindle formation. Has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CEP110.[6] [7] [8] [9] [10] [11]   Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with RAD23B appears to stabilize XPC. In vitro, stimulates DNA binding of the XPC:RAD23B dimer.[12] [13] [14] [15] [16] [17]   The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair.[18] [19] [20] [21] [22] [23]  [XPC_HUMAN] Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity.[24] [25] [26] [27] [28] [29] [30] [31] [32] [33]   The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts. XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1.[34] [35] [36] [37] [38] [39] [40] [41] [42] [43]  
   Evolutionary Conservation Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
 
  Publication Abstract from PubMed Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.
 Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein.,Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo JF, Craescu CT J Mol Biol. 2007 Nov 2;373(4):1032-46. Epub 2007 Aug 25. PMID:17897675[44]
 From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
   References ↑ Camenisch U, Trautlein D, Clement FC, Fei J, Leitenstorfer A, Ferrando-May E, Naegeli H. Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J. 2009 Aug 19;28(16):2387-99. doi: 10.1038/emboj.2009.187. Epub 2009 Jul, 16. PMID:19609301 doi:10.1038/emboj.2009.187↑ Yasuda G, Nishi R, Watanabe E, Mori T, Iwai S, Orioli D, Stefanini M, Hanaoka F, Sugasawa K. In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Mol Cell Biol. 2007 Oct;27(19):6606-14. Epub 2007 Aug 6. PMID:17682058 doi:10.1128/MCB.02166-06↑ Maillard O, Solyom S, Naegeli H. An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biol. 2007 Apr;5(4):e79. PMID:17355181 doi:10.1371/journal.pbio.0050079↑ Li L, Bales ES, Peterson CA, Legerski RJ. Characterization of molecular defects in xeroderma pigmentosum group C. Nat Genet. 1993 Dec;5(4):413-7. PMID:8298653 doi:http://dx.doi.org/10.1038/ng1293-413↑ Chavanne F, Broughton BC, Pietra D, Nardo T, Browitt A, Lehmann AR, Stefanini M. Mutations in the XPC gene in families with xeroderma pigmentosum and consequences at the cell, protein, and transcript levels. Cancer Res. 2000 Apr 1;60(7):1974-82. PMID:10766188 ↑ Lee VD, Huang B. Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11039-43. PMID:8248209 ↑ Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem. 2001 Jun 1;276(22):18665-72. Epub 2001 Feb 27. PMID:11279143 doi:10.1074/jbc.M100855200↑ Salisbury JL, Suino KM, Busby R, Springett M. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol. 2002 Aug 6;12(15):1287-92. PMID:12176356 ↑ Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol. 2005 Jul;25(13):5664-74. PMID:15964821 doi:10.1128/MCB.25.13.5664-5674.2005↑ Bunick CG, Miller MR, Fuller BE, Fanning E, Chazin WJ. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry. 2006 Dec 19;45(50):14965-79. PMID:17154534 doi:10.1021/bi061370o↑ Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371↑ Lee VD, Huang B. Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11039-43. PMID:8248209 ↑ Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem. 2001 Jun 1;276(22):18665-72. Epub 2001 Feb 27. PMID:11279143 doi:10.1074/jbc.M100855200↑ Salisbury JL, Suino KM, Busby R, Springett M. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol. 2002 Aug 6;12(15):1287-92. PMID:12176356 ↑ Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol. 2005 Jul;25(13):5664-74. PMID:15964821 doi:10.1128/MCB.25.13.5664-5674.2005↑ Bunick CG, Miller MR, Fuller BE, Fanning E, Chazin WJ. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry. 2006 Dec 19;45(50):14965-79. PMID:17154534 doi:10.1021/bi061370o↑ Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371↑ Lee VD, Huang B. Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11039-43. PMID:8248209 ↑ Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem. 2001 Jun 1;276(22):18665-72. Epub 2001 Feb 27. PMID:11279143 doi:10.1074/jbc.M100855200↑ Salisbury JL, Suino KM, Busby R, Springett M. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol. 2002 Aug 6;12(15):1287-92. PMID:12176356 ↑ Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol. 2005 Jul;25(13):5664-74. PMID:15964821 doi:10.1128/MCB.25.13.5664-5674.2005↑ Bunick CG, Miller MR, Fuller BE, Fanning E, Chazin WJ. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry. 2006 Dec 19;45(50):14965-79. PMID:17154534 doi:10.1021/bi061370o↑ Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371↑ Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998 Aug;2(2):223-32. PMID:9734359 ↑ Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem. 2000 Mar 31;275(13):9870-5. PMID:10734143 ↑ Batty D, Rapic'-Otrin V, Levine AS, Wood RD. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol. 2000 Jul 7;300(2):275-90. PMID:10873465 doi:10.1006/jmbi.2000.3857↑ Sugasawa K, Shimizu Y, Iwai S, Hanaoka F. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair (Amst). 2002 Jan 22;1(1):95-107. PMID:12509299 ↑ Janicijevic A, Sugasawa K, Shimizu Y, Hanaoka F, Wijgers N, Djurica M, Hoeijmakers JH, Wyman C. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst). 2003 Mar 1;2(3):325-36. PMID:12547395 ↑ Camenisch U, Trautlein D, Clement FC, Fei J, Leitenstorfer A, Ferrando-May E, Naegeli H. Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J. 2009 Aug 19;28(16):2387-99. doi: 10.1038/emboj.2009.187. Epub 2009 Jul, 16. PMID:19609301 doi:10.1038/emboj.2009.187↑ Sugasawa K, Akagi J, Nishi R, Iwai S, Hanaoka F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol Cell. 2009 Nov 25;36(4):642-53. doi: 10.1016/j.molcel.2009.09.035. PMID:19941824 doi:10.1016/j.molcel.2009.09.035↑ Clement FC, Kaczmarek N, Mathieu N, Tomas M, Leitenstorfer A, Ferrando-May E, Naegeli H. Dissection of the xeroderma pigmentosum group C protein function by site-directed mutagenesis. Antioxid Redox Signal. 2011 Jun 15;14(12):2479-90. doi: 10.1089/ars.2010.3399., Epub 2010 Oct 7. PMID:20649465 doi:10.1089/ars.2010.3399↑ Neher TM, Rechkunova NI, Lavrik OI, Turchi JJ. Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals contacts with  both strands of the DNA duplex and spans the DNA adduct. Biochemistry. 2010 Feb 2;49(4):669-78. doi: 10.1021/bi901575h. PMID:20028083 doi:10.1021/bi901575h↑ Shimizu Y, Uchimura Y, Dohmae N, Saitoh H, Hanaoka F, Sugasawa K. Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions. J Nucleic Acids. 2010 Jul 25;2010. pii: 805698. doi: 10.4061/2010/805698. PMID:20798892 doi:10.4061/2010/805698↑ Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998 Aug;2(2):223-32. PMID:9734359 ↑ Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem. 2000 Mar 31;275(13):9870-5. PMID:10734143 ↑ Batty D, Rapic'-Otrin V, Levine AS, Wood RD. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol. 2000 Jul 7;300(2):275-90. PMID:10873465 doi:10.1006/jmbi.2000.3857↑ Sugasawa K, Shimizu Y, Iwai S, Hanaoka F. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair (Amst). 2002 Jan 22;1(1):95-107. PMID:12509299 ↑ Janicijevic A, Sugasawa K, Shimizu Y, Hanaoka F, Wijgers N, Djurica M, Hoeijmakers JH, Wyman C. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst). 2003 Mar 1;2(3):325-36. PMID:12547395 ↑ Camenisch U, Trautlein D, Clement FC, Fei J, Leitenstorfer A, Ferrando-May E, Naegeli H. Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J. 2009 Aug 19;28(16):2387-99. doi: 10.1038/emboj.2009.187. Epub 2009 Jul, 16. PMID:19609301 doi:10.1038/emboj.2009.187↑ Sugasawa K, Akagi J, Nishi R, Iwai S, Hanaoka F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol Cell. 2009 Nov 25;36(4):642-53. doi: 10.1016/j.molcel.2009.09.035. PMID:19941824 doi:10.1016/j.molcel.2009.09.035↑ Clement FC, Kaczmarek N, Mathieu N, Tomas M, Leitenstorfer A, Ferrando-May E, Naegeli H. Dissection of the xeroderma pigmentosum group C protein function by site-directed mutagenesis. Antioxid Redox Signal. 2011 Jun 15;14(12):2479-90. doi: 10.1089/ars.2010.3399., Epub 2010 Oct 7. PMID:20649465 doi:10.1089/ars.2010.3399↑ Neher TM, Rechkunova NI, Lavrik OI, Turchi JJ. Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals contacts with  both strands of the DNA duplex and spans the DNA adduct. Biochemistry. 2010 Feb 2;49(4):669-78. doi: 10.1021/bi901575h. PMID:20028083 doi:10.1021/bi901575h↑ Shimizu Y, Uchimura Y, Dohmae N, Saitoh H, Hanaoka F, Sugasawa K. Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions. J Nucleic Acids. 2010 Jul 25;2010. pii: 805698. doi: 10.4061/2010/805698. PMID:20798892 doi:10.4061/2010/805698↑ Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo JF, Craescu CT. Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein. J Mol Biol. 2007 Nov 2;373(4):1032-46. Epub 2007 Aug 25. PMID:17897675 doi:10.1016/j.jmb.2007.08.046
 
 |