Structural highlights
6us5 is a 6 chain structure with sequence from Atcc 12980. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
Ligands: | , , |
NonStd Res: | |
Related: | 6ur2, 6ur4, 6ur9 |
Gene: | DPO1, polA (ATCC 12980) |
Activity: | DNA-directed DNA polymerase, with EC number 2.7.7.7 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Publication Abstract from PubMed
All known polymerases copy genetic material by catalyzing phosphodiester bond formation. This highly conserved activity proceeds by a common mechanism, such that incorporated nucleoside analogs terminate chain elongation if the resulting primer strand lacks a terminal hydroxyl group. Even conservatively substituted 3'-amino nucleotides generally act as chain terminators, and no enzymatic pathway for their polymerization has yet been found. Although 3'-amino nucleotides can be chemically coupled to yield stable oligonucleotides containing N3'-->P5' phosphoramidate (NP) bonds, no such internucleotide linkages are known to occur in nature. Here, we report that 3'-amino terminated primers are, in fact, slowly extended by the DNA polymerase from B. stearothermophilus in a template-directed manner. When its cofactor is Ca(2+) rather than Mg(2+), the reaction is fivefold faster, permitting multiple turnover NP bond formation to yield NP-DNA strands from the corresponding 3'-amino-2',3'-dideoxynucleoside 5'-triphosphates. A single active site mutation further enhances the rate of NP-DNA synthesis by an additional 21-fold. We show that DNA-dependent NP-DNA polymerase activity depends on conserved active site residues and propose a likely mechanism for this activity based on a series of crystal structures of bound complexes. Our results significantly broaden the catalytic scope of polymerase activity and suggest the feasibility of a genetic transition between native nucleic acids and NP-DNA.
Synthesis of phosphoramidate-linked DNA by a modified DNA polymerase.,Lelyveld VS, Zhang W, Szostak JW Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7276-7283. doi:, 10.1073/pnas.1922400117. Epub 2020 Mar 18. PMID:32188786[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Lelyveld VS, Zhang W, Szostak JW. Synthesis of phosphoramidate-linked DNA by a modified DNA polymerase. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7276-7283. doi:, 10.1073/pnas.1922400117. Epub 2020 Mar 18. PMID:32188786 doi:http://dx.doi.org/10.1073/pnas.1922400117