| Structural highlights
2c9j is a 8 chain structure with sequence from Cermm. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| NonStd Res: | |
Related: | 1b9c, 1bfp, 1c4f, 1ema, 1emb, 1emc, 1eme, 1emf, 1emg, 1emk, 1eml, 1emm, 1f09, 1f0b, 1g7k, 1gfl, 1ggx, 1h6r, 1hcj, 1huy, 1jby, 1jbz, 1jc0, 1jc1, 1kp5, 1kyp, 1kyr, 1kys, 1myw, 1oxd, 1oxe, 1oxf, 1q4a, 1q4b, 1q4c, 1q4d, 1q4e, 1q73, 1qxt, 1qy3, 1qyf, 1rm9, 1rmm, 1rmo, 1rmp, 1rrx, 1s6z, 1w7s, 1w7t, 1w7u, 1xa9, 1xae, 1xss, 1yjf, 1z1p, 1z1q, 1zgo, 1zgp, 1zgq, 1zux, 2a46, 2a50, 2a52, 2a53, 2a54, 2a56, 2b3p, 2b3q, 2btj, 2emd, 2emn, 2emo, 2c9i |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Autofluorescent proteins of the GFP family all share the same three-dimensional beta-can fold; yet they exhibit widely different optical properties, arising either from chemical modification of the chromophore itself or from specific interactions of the chromophore with the surrounding protein moiety. Here we present a structural and spectroscopic characterization of the green fluorescent protein cmFP512 from Cerianthus membranaceus, a nonbioluminescent, azooxanthellate cnidarian, which has only approximately 22% sequence identity with Aequorea victoria GFP. The X-ray structure, obtained by molecular replacement at a resolution of 1. 35 A, shows the chromophore, formed from the tripeptide Gln-Tyr-Gly, in a hydrogen-bonded cage in the center of an 11-stranded beta-barrel, tightly restrained by adjacent residues and structural water molecules. It exists in a neutral (A) and an anionic (B) species, with absorption/emission maxima at 392/460 (pH 5) and 503/512 nm (pH 7). Their fractional populations and peak positions depend sensitively on pH, reflecting protonation of groups adjacent to the chromophore. The pH dependence of the spectra is explained by a protonation mechanism involving a hydrogen-bonded cluster of charged/polar groups. Cryospectroscopy at 12 K was also performed to analyze the vibronic coupling of the electronic transitions.
Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy.,Nienhaus K, Renzi F, Vallone B, Wiedenmann J, Nienhaus GU Biochemistry. 2006 Oct 31;45(43):12942-53. PMID:17059211[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Nienhaus K, Renzi F, Vallone B, Wiedenmann J, Nienhaus GU. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. Biochemistry. 2006 Oct 31;45(43):12942-53. PMID:17059211 doi:10.1021/bi060885c
|