3d23
From Proteopedia
Main protease of HCoV-HKU1
Structural highlights
Function[R1AB_CVHN1] The replicase polyprotein of coronaviruses is a multifunctional protein: it contains the activities necessary for the transcription of negative stranded RNA, leader RNA, subgenomic mRNAs and progeny virion RNA as well as proteinases responsible for the cleavage of the polyprotein into functional products. The papain-like proteinase 1 (PL1-PRO) and papain-like proteinase 2 (PL2-PRO) are responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PLP2 possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3 (By similarity). The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK. Also contains an ADP-ribose-1-phosphate (ADRP)-binding function (By similarity). The helicase which contains a zinc finger structure displays RNA and DNA duplex-unwinding activities with 5' to 3' polarity. ATPase activity is strongly stimulated by poly(U), poly(dT), poly(C), poly(dA), but not by poly(G) (By similarity). The exoribonuclease acts on both ssRNA and dsRNA in a 3' to 5' direction (By similarity). Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter (By similarity). Nsp9 is a ssRNA-binding protein (By similarity). NendoU is a Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe newly emergent human coronavirus HKU1 (HCoV-HKU1) was first identified in Hong Kong in 2005. Infection by HCoV-HKU1 occurs worldwide and causes syndromes such as the common cold, bronchitis, and pneumonia. The CoV main protease (M(pro)), which is a key enzyme in viral replication via the proteolytic processing of the replicase polyproteins, has been recognized as an attractive target for rational drug design. In this study, we report the structure of HCoV-HKU1 M(pro) in complex with a Michael acceptor, inhibitor N3. The structure of HCoV-HKU1 provides a high-quality model for group 2A CoVs, which are distinct from group 2B CoVs such as severe acute respiratory syndrome CoV. The structure, together with activity assays, supports the relative conservation at the P1 position that was discovered by sequencing the HCoV-HKU1 genome. Combined with structural data from other CoV M(pro)s, the HCoV-HKU1 M(pro) structure reported here provides insights into both substrate preference and the design of antivirals targeting CoVs. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.,Zhao Q, Li S, Xue F, Zou Y, Chen C, Bartlam M, Rao Z J Virol. 2008 Sep;82(17):8647-55. Epub 2008 Jun 18. PMID:18562531[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Cvhn1 | Large Structures | Chen, C | Li, S | Zhao, Q | Zou, Y | Atp-binding | Endonuclease | Exonuclease | Helicase | Hydrolase-hydrolase inhibitor complex | Main protease | Membrane | Metal-binding | Nuclease | Nucleotide-binding | Nucleotidyltransferase | Protease | Rna replication | Rna-binding | Rna-directed rna polymerase | Thiol protease | Transferase | Transmembrane | Zinc-finger