1fvr
From Proteopedia
TIE2 KINASE DOMAIN
Structural highlights
Disease[TIE2_HUMAN] Defects in TEK are a cause of dominantly inherited venous malformations (VMCM) [MIM:600195]; an error of vascular morphogenesis characterized by dilated, serpiginous channels.[1] [2] [3] [4] [5] Note=May play a role in a range of diseases with a vascular component, including neovascularization of tumors, psoriasis and inflammation.[6] [7] Function[TIE2_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Angiogenesis, the formation of new vessels from the existing vasculature, is a critical process during early development as well as in a number of disease processes. Tie2 (also known as Tek) is an endothelium-specific receptor tyrosine kinase involved in both angiogenesis and vasculature maintenance. RESULTS: We have determined the crystal structure of the Tie2 kinase domain to 2.2 A resolution. The structure contains the catalytic core, the kinase insert domain (KID), and the C-terminal tail. The overall fold is similar to that observed in other serine/threonine and tyrosine kinase structures; however, several unique features distinguish the Tie2 structure from those of other kinases. The Tie2 nucleotide binding loop is in an inhibitory conformation, which is not seen in other kinase structures, while its activation loop adopts an "activated-like" conformation in the absence of phosphorylation. Tyr-897, located in the N-terminal domain, may negatively regulate the activity of Tie2 by preventing dimerization of the kinase domains or by recruiting phosphatases when it is phosphorylated. CONCLUSION: Regulation of the kinase activity of Tie2 is a complex process. Conformational changes in the nucleotide binding loop, activation loop, C helix, and the C-terminal tail are required for ATP and substrate binding. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail.,Shewchuk LM, Hassell AM, Ellis B, Holmes WD, Davis R, Horne EL, Kadwell SH, McKee DD, Moore JT Structure. 2000 Nov 15;8(11):1105-13. PMID:11080633[18] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Large Structures | Transferase | Davis, R | Ellis, B | Hassell, A M | Holmes, W D | Horne, E L | Kadwell, S H | McKee, D D | Moore, J T | Shewchuk, L M | Tyrosine kinase