1ohk
From Proteopedia
HUMAN DIHYDROFOLATE REDUCTASE, ORTHORHOMBIC (P21 21 21) CRYSTAL FORM
Structural highlights
Disease[DYR_HUMAN] Defects in DHFR are the cause of megaloblastic anemia due to dihydrofolate reductase deficiency (DHFRD) [MIM:613839]. DHFRD is an inborn error of metabolism, characterized by megaloblastic anemia and/or pancytopenia, severe cerebral folate deficiency, and cerebral tetrahydrobiopterin deficiency. Clinical features include variable neurologic symptoms, ranging from severe developmental delay and generalized seizures in infancy, to childhood absence epilepsy with learning difficulties, to lack of symptoms.[1] [2] Function[DYR_HUMAN] Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFRL1.[3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedStructural data for two independent crystal forms (monoclinic, C2, and orthorhombic, P2(1)2(1)2(1)) of the ternary complex of the potent antitumor agent PT523 [N alpha-(4-amino-4-deoxypteroyl)-N delta-hemiphthaloyl-L-ornithine], reduced nicotinamide adenine dinucleotide phosphate (NADPH), and recombinant human dihydrofolate reductase (hDHFR) reveals multiple binding orientations for the hemiphthaloyl group of the inhibitor. Analysis of these data shows that PT523 binds with its pteridine ring in the same orientation observed for methotrexate (MTX) analogues. However, in each structure, the hemiphthaloyl ring occupies three alternate conformations. In the C2 lattice, the phthaloyl moiety binds in two extended conformations, A and C, with each conformer having a 180 degrees flip of the o-carboxylate group, and a third, lower occupancy conformer B, with the phthaloyl group folded within contact of the active-site pocket. In the orthorhombic lattice, PT523 also has three conformers for the phthaloyl group; however, these differ from those observed in the monoclinic lattice. Two major conformers, A and C, are displaced on either side of the extended position observed in the C2 lattice, one near the folded B conformer of the C2 lattice and the other extended. These conformers form tighter intermolecular contacts than those in the C2 lattice. Conformer B is folded back away from the active site in a unique position. There are also significant differences in the conformation of the adenine-ribose moiety of NADPH in both complexes that differ from that observed for other inhibitor-NADPH-hDHFR ternary complexes. These data suggest that the added intermolecular contacts made by the hemiphaloyl group of PT523 contribute to its tighter binding to hDHFR than MTX, which does not extend as far from the active site and cannot make these contacts. These crystallographic observations of multiple conformations for the hemiphthaloyl group are in general agreement with solution NMR data for the binding of PT523 to hDHFR [Johnson et al. (1997) Biochemistry 36, 4399-4411], which show that the hemiphthaloyl group may adopt more than one conformation. However, the crystallographic data reveal more discretely occupied positions than can be interpreted from the solution data. These results suggest that crystal packing interactions may influence their stability. Comparison of two independent crystal structures of human dihydrofolate reductase ternary complexes reduced with nicotinamide adenine dinucleotide phosphate and the very tight-binding inhibitor PT523.,Cody V, Galitsky N, Luft JR, Pangborn W, Rosowsky A, Blakley RL Biochemistry. 1997 Nov 11;36(45):13897-903. PMID:9374868[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|