|  |   Structural highlights   Function [RT106_YEAST] Histones H3 and H4 chaperone involved in the nucleosome formation and heterochromatin silencing. Required for the deposition of H3K56ac-carrying H3-H4 complex onto newly-replicated DNA. Plays a role in the transcriptional regulation of the cell-cycle dependent histone genes by directly recruiting the SWI/SNF and RSC chromatin remodeling complexes to the histone genes in a cell cycle dependent manner. In cooperation with HIR and ASF1, creates a repressive structure at the core histone gene promoter and contributes to their repression outside of S phase. Involved in regulation of Ty1 transposition.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]  
 
  Publication Abstract from PubMed The histone chaperone Rtt106 binds histone H3 acetylated at lysine 56 (H3K56ac) and facilitates nucleosome assembly during several molecular processes. Both the structural basis of this modification-specific recognition and how this recognition informs Rtt106 function are presently unclear. Guided by our crystal structure of Rtt106, we identified two regions on its double-pleckstrin homology domain architecture that mediated histone binding. When histone binding was compromised, Rtt106 localized properly to chromatin but failed to deliver H3K56ac, leading to replication and silencing defects. By mutating analogous regions in the structurally homologous chromatin-reorganizer Pob3, we revealed a conserved histone-binding function for a basic patch found on both proteins. In contrast, a loop connecting two beta-strands was required for histone binding by Rtt106 but was dispensable for Pob3 function. Unlike Rtt106, Pob3 histone binding was modification-independent, implicating the loop of Rtt106 in H3K56ac-specific recognition in vivo. Our studies described the structural origins of Rtt106 function, identified a conserved histone-binding surface, and defined a critical role for Rtt106:H3K56ac-binding specificity in silencing and replication-coupled nucleosome turnover.
 Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing.,Zunder RM, Antczak AJ, Berger JM, Rine J Proc Natl Acad Sci U S A. 2011 Dec 23. PMID:22198837[13]
 From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
   References ↑ Scholes DT, Banerjee M, Bowen B, Curcio MJ. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics. 2001 Dec;159(4):1449-65. PMID:11779788 ↑ Huang S, Zhou H, Katzmann D, Hochstrasser M, Atanasova E, Zhang Z. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13410-5. Epub 2005 Sep 12. PMID:16157874 doi:http://dx.doi.org/0506176102↑ Huang S, Zhou H, Tarara J, Zhang Z. A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing. EMBO J. 2007 May 2;26(9):2274-83. Epub 2007 Apr 5. PMID:17410207 doi:http://dx.doi.org/7601670↑ Fillingham J, Kainth P, Lambert JP, van Bakel H, Tsui K, Pena-Castillo L, Nislow C, Figeys D, Hughes TR, Greenblatt J, Andrews BJ. Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol Cell. 2009 Aug 14;35(3):340-51. PMID:19683497 doi:http://dx.doi.org/S1097-2765(09)00461-4↑ Burgess RJ, Zhou H, Han J, Zhang Z. A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell. 2010 Feb 26;37(4):469-80. doi: 10.1016/j.molcel.2010.01.020. PMID:20188666 doi:http://dx.doi.org/10.1016/j.molcel.2010.01.020↑ Wan Y, Chen W, Xing J, Tan J, Li B, Chen H, Lin Z, Chiang JH, Saleem RA. Transcriptome profiling reveals a novel role for trichostatin A in antagonizing histone chaperone Chz1 mediated telomere anti-silencing. FEBS Lett. 2011 Aug 4;585(15):2519-25. doi: 10.1016/j.febslet.2011.06.036. Epub, 2011 Jul 14. PMID:21763693 doi:http://dx.doi.org/10.1016/j.febslet.2011.06.036↑ Kurat CF, Lambert JP, van Dyk D, Tsui K, van Bakel H, Kaluarachchi S, Friesen H, Kainth P, Nislow C, Figeys D, Fillingham J, Andrews BJ. Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein. Genes Dev. 2011 Dec 1;25(23):2489-501. doi: 10.1101/gad.173427.111. PMID:22156209 doi:http://dx.doi.org/10.1101/gad.173427.111↑ Yu Y, Srinivasan M, Nakanishi S, Leatherwood J, Shilatifard A, Sternglanz R. A conserved patch near the C terminus of histone H4 is required for genome stability in budding yeast. Mol Cell Biol. 2011 Jun;31(11):2311-25. doi: 10.1128/MCB.01432-10. Epub 2011 Mar , 28. PMID:21444721 doi:http://dx.doi.org/10.1128/MCB.01432-10↑ Ferreira ME, Flaherty K, Prochasson P. The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIR-dependent histone genes. PLoS One. 2011;6(6):e21113. doi: 10.1371/journal.pone.0021113. Epub 2011 Jun 15. PMID:21698254 doi:http://dx.doi.org/10.1371/journal.pone.0021113↑ Amin AD, Dimova DK, Ferreira ME, Vishnoi N, Hancock LC, Osley MA, Prochasson P. The mitotic Clb cyclins are required to alleviate HIR-mediated repression of the  yeast histone genes at the G1/S transition. Biochim Biophys Acta. 2012 Jan;1819(1):16-27. doi: 10.1016/j.bbagrm.2011.09.003. , Epub 2011 Sep 28. PMID:21978826 doi:http://dx.doi.org/10.1016/j.bbagrm.2011.09.003↑ Silva AC, Xu X, Kim HS, Fillingham J, Kislinger T, Mennella TA, Keogh MC. The replication-independent histone H3-H4 chaperones HIR, ASF1, and RTT106 co-operate to maintain promoter fidelity. J Biol Chem. 2012 Jan 13;287(3):1709-18. doi: 10.1074/jbc.M111.316489. Epub 2011 , Nov 29. PMID:22128187 doi:http://dx.doi.org/10.1074/jbc.M111.316489↑ Liu Y, Huang H, Zhou BO, Wang SS, Hu Y, Li X, Liu J, Zang J, Niu L, Wu J, Zhou JQ, Teng M, Shi Y. Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing. J Biol Chem. 2010 Feb 5;285(6):4251-62. Epub 2009 Dec 10. PMID:20007951 doi:10.1074/jbc.M109.055996↑ Zunder RM, Antczak AJ, Berger JM, Rine J. Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc Natl Acad Sci U S A. 2011 Dec 23. PMID:22198837 doi:10.1073/pnas.1119095109
 
 |