Structural highlights
Publication Abstract from PubMed
Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high-affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat-protein scaffolds and apply it to leucine-rich-repeat proteins. First, self-compatible building-block modules are designed that, when polymerized, generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom-designed shapes are generated by appropriately combining building-block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat-protein curvature.
Control of repeat-protein curvature by computational protein design.,Park K, Shen BW, Parmeggiani F, Huang PS, Stoddard BL, Baker D Nat Struct Mol Biol. 2015 Jan 12. doi: 10.1038/nsmb.2938. PMID:25580576[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Park K, Shen BW, Parmeggiani F, Huang PS, Stoddard BL, Baker D. Control of repeat-protein curvature by computational protein design. Nat Struct Mol Biol. 2015 Jan 12. doi: 10.1038/nsmb.2938. PMID:25580576 doi:http://dx.doi.org/10.1038/nsmb.2938