| Structural highlights
Function
[PDE2A_HUMAN] Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes.[1] [2]
Publication Abstract from PubMed
Herein, we describe the discovery of a potent, selective, brain-penetrating, in vivo active phosphodiesterase (PDE) 2A inhibitor lead series. To identify high-quality leads suitable for optimization and enable validation of the physiological function of PDE2A in vivo, structural modifications of the high-throughput screening hit 18 were performed. Our lead generation efforts revealed three key potency-enhancing functionalities with minimal increases in molecular weight (MW) and no change in topological polar surface area (TPSA). Combining these structural elements led to the identification of 6-methyl-N-((1R)-1-(4-(trifluoromethoxy)phenyl)propyl)pyrazolo[1,5-a]pyrimidine-3 -carboxamide (38a), a molecule with the desired balance of preclinical properties. Further characterization by co-crystal structure analysis of 38a bound to PDE2A uncovered a unique binding mode and provided insights into its observed potency and PDE selectivity. Compound 38a significantly elevated 3',5'-cyclic guanosine monophosphate (cGMP) levels in mouse brain following oral administration, thus validating this compound as a useful pharmacological tool and an attractive lead for future optimization.
Discovery of an Orally Bioavailable, Brain-Penetrating, In Vivo Active Phosphodiesterase 2A Inhibitor Lead Series for the Treatment of Cognitive Disorders.,Mikami S, Sasaki S, Asano Y, Ujikawa O, Fukumoto S, Nakashima K, Oki H, Kamiguchi N, Imada H, Iwashita H, Taniguchi T J Med Chem. 2017 Jul 31. doi: 10.1021/acs.jmedchem.7b00709. PMID:28759228[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Iffland A, Kohls D, Low S, Luan J, Zhang Y, Kothe M, Cao Q, Kamath AV, Ding YH, Ellenberger T. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Biochemistry. 2005 Jun 14;44(23):8312-25. PMID:15938621 doi:10.1021/bi047313h
- ↑ Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A. 2009 Oct 14. PMID:19828435
- ↑ Mikami S, Sasaki S, Asano Y, Ujikawa O, Fukumoto S, Nakashima K, Oki H, Kamiguchi N, Imada H, Iwashita H, Taniguchi T. Discovery of an Orally Bioavailable, Brain-Penetrating, In Vivo Active Phosphodiesterase 2A Inhibitor Lead Series for the Treatment of Cognitive Disorders. J Med Chem. 2017 Jul 31. doi: 10.1021/acs.jmedchem.7b00709. PMID:28759228 doi:http://dx.doi.org/10.1021/acs.jmedchem.7b00709
|