6agw
From Proteopedia
Pro-domain of Caspase-8
Structural highlights
Disease[CASP8_HUMAN] Defects in CASP8 are the cause of caspase-8 deficiency (CASP8D) [MIM:607271]. CASP8D is a disorder resembling autoimmune lymphoproliferative syndrome (ALPS). It is characterized by lymphadenopathy, splenomegaly, and defective CD95-induced apoptosis of peripheral blood lymphocytes (PBLs). It leads to defects in activation of T-lymphocytes, B-lymphocytes, and natural killer cells leading to immunodeficiency characterized by recurrent sinopulmonary and herpes simplex virus infections and poor responses to immunization.[1] Function[CASP8_HUMAN] Most upstream protease of the activation cascade of caspases responsible for the TNFRSF6/FAS mediated and TNFRSF1A induced cell death. Binding to the adapter molecule FADD recruits it to either receptor. The resulting aggregate called death-inducing signaling complex (DISC) performs CASP8 proteolytic activation. The active dimeric enzyme is then liberated from the DISC and free to activate downstream apoptotic proteases. Proteolytic fragments of the N-terminal propeptide (termed CAP3, CAP5 and CAP6) are likely retained in the DISC. Cleaves and activates CASP3, CASP4, CASP6, CASP7, CASP9 and CASP10. May participate in the GZMB apoptotic pathways. Cleaves ADPRT. Hydrolyzes the small-molecule substrate, Ac-Asp-Glu-Val-Asp-|-AMC. Likely target for the cowpox virus CRMA death inhibitory protein. Isoform 5, isoform 6, isoform 7 and isoform 8 lack the catalytic site and may interfere with the pro-apoptotic activity of the complex.[2] [3] Publication Abstract from PubMedThe assembly of death-inducing signaling complex (DISC) for activation of initiator caspase is a key step for the receptor-mediated apoptosis signaling. Many death effector domain (DED)-containing proteins are involved in DISC assembly and controlling. One of the main DISC component, caspase-8, contains DED and DED-mediated dimerization and oligomerization in the DISC is critical for the activation of this initiator caspase. There have been intensive studies to understand DED-mediated dimerization and oligomerization for the DISC assembly but no clear answer has been provided and there are many controversial arguments. Here, we suggested novel dimerization process of tandem DED of caspase-8 with crystallographic study. Molecular basis of dimerization of initiator caspase was revealed by crystal structure of caspase-8 pro-domain.,Park HH Cell Death Differ. 2019 Jul;26(7):1213-1220. doi: 10.1038/s41418-018-0200-x. Epub, 2018 Sep 11. PMID:30206319[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|