7dop
From Proteopedia
Structural insights into viral RNA capping and plasma membrane targeting by Chikungunya virus nonstructural protein 1
Structural highlights
Function[POLN_CHIKS] P123 is short-lived polyproteins, accumulating during early stage of infection. It localizes the viral replication complex to the cytoplasmic surface of modified endosomes and lysosomes. By interacting with nsP4, it starts viral genome replication into antigenome. After these early events, P123 is cleaved sequentially into nsP1, nsP2 and nsP3. This sequence of delayed processing would allow correct assembly and membrane association of the RNA polymerase complex (By similarity). nsP1 is a cytoplasmic capping enzyme. This function is necessary since all viral RNAs are synthesized in the cytoplasm, and host capping enzymes are restricted to the nucleus. The enzymatic reaction involves a covalent link between 7-methyl-GMP and nsP1, whereas eukaryotic capping enzymes form a covalent complex only with GMP. nsP1 capping would consist in the following reactions: GTP is first methylated and then forms the m7GMp-nsP1 complex, from which 7-methyl-GMP complex is transferred to the mRNA to create the cap structure. Palmitoylated nsP1 is remodeling host cell cytoskeleton, and induces filopodium-like structure formation at the surface of the host cell (By similarity). nsP2 has two separate domain with different biological activities. The N-terminal section is part of the RNA polymerase complex and has RNA trisphosphatase and RNA helicase activity. The C-terminal section harbors a protease that specifically cleaves and releases the four mature proteins (By similarity). Also inhibits cellular transcription by inducing rapid degradation of POLR2A, a catalytic subunit of the RNAPII complex. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response. nsP3 is essential for minus strand and subgenomic 26S mRNA synthesis (By similarity). nsP4 is an RNA dependent RNA polymerase. It replicates genomic and antigenomic RNA by recognizing replications specific signals. Transcribes also a 26S subgenomic mRNA by initiating RNA synthesis internally on antigenomic RNA. This 26S mRNA codes for structural proteins (By similarity). Publication Abstract from PubMedChikungunya virus (CHIKV) causes a debilitating arthralgic inflammatory disease in humans. The multifunctional CHIKV protein, nsP1, facilitates virus RNA replication and transcription by anchoring the viral replication complex (RC) to plasma membrane vesicles and synthesizing the viral RNA 5' cap-0. Here, we report a cryo-EM structure of CHIKV nsP1 at 2.38 A resolution. Twelve copies of nsP1 form a crown-shaped ring structure with a 7.5-nm-wide channel for mediating communication and exchange between the viral RC and the host cell. The catalytic site for viral RNA capping is located in a tunnel that is shaped by neighboring nsP1 molecules. Two membrane-association loops target nsP1 to the inner leaflet of the plasma membrane via palmitoylation and hydrophobic and electrostatic interactions. Our study provides the structural basis of viral RNA capping and RC assembly mediated by nsP1 and guides the development of antivirals targeting these essential steps of virus infection. Structural insights into viral RNA capping and plasma membrane targeting by Chikungunya virus nonstructural protein 1.,Zhang K, Law YS, Law MCY, Tan YB, Wirawan M, Luo D Cell Host Microbe. 2021 Mar 9. pii: S1931-3128(21)00097-4. doi:, 10.1016/j.chom.2021.02.018. PMID:33730549[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|