1ki0
From Proteopedia
The X-ray Structure of Human Angiostatin
Structural highlights
Disease[PLMN_HUMAN] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:217090]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.[1] [2] [3] [4] [5] [6] [7] [8] Function[PLMN_HUMAN] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.[9] Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.[10] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAngiogenesis inhibitors have gained much public attention recently as anti-cancer agents and several are currently in clinical trials, including angiostatin (Phase I, Thomas Jefferson University Hospital, Philadelphia, PA). We report here the bowl-shaped structure of angiostatin kringles 1-3, the first multi-kringle structure to be determined. All three kringle lysine-binding sites contain a bound bicine molecule of crystallization while the former of kringle 2 and kringle 3 are cofacial. Moreover, the separation of the kringle 2 and kringle 3 lysiner binding sites is sufficient to accommodate the alpha-helix of the 30 residue peptide VEK-30 found in the kringle 2/VEK-30 complex. Together the three kringles produce a central cavity suggestive of a unique domain where they may function in concert. The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin.,Abad MC, Arni RK, Grella DK, Castellino FJ, Tulinsky A, Geiger JH J Mol Biol. 2002 May 10;318(4):1009-17. PMID:12054798[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Human | Large Structures | Plasmin | Abad, M C | Arni, R K | Castellino, F J | Geiger, J H | Grella, D K | Tulinsky, A | Hydrolase | Kringle domain