1fev

From Proteopedia

Revision as of 13:14, 2 May 2008 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 1fev

CRYSTAL STRUCTURE OF THE ALA4AIB MUTATION IN RNASE S


Overview

The S protein-S peptide interaction is a model system to study binding thermodynamics in proteins. We substituted alanine at position 4 in S peptide by alpha-aminoisobutyric acid (Aib) to investigate the effect of this substitution on the conformation of free S peptide and on its binding to S protein. The thermodynamic consequences of this replacement were studied using isothermal titration calorimetry. The structures of the free and complexed peptides were studied using circular dichroic spectroscopy and X-ray crystallography, respectively. The alanine4Aib replacement stabilizes the free S peptide helix and does not perturb the tertiary structure of RNase S. Surprisingly, and in contrast to the wild-type S peptide, the DeltaG degrees of binding of peptide to S pro, over the temperature range 5-30 degrees C, is virtually independent of temperature. At 25 degrees C, the DeltaDeltaG degrees, DeltaDeltaH degrees, DeltaDeltaS and DeltaDeltaCp of binding are 0.7 kcal/mol, 2.8 kcal/mol, 6 kcal/mol x K and -60 kcal/mol x K, respectively. The positive value of DeltaDeltaS is probably due to a decrease in the entropy of uncomplexed alanine4Aib relative to the wild-type peptide. The positive value of DeltaDeltaH: degrees is unexpected and is probably due to favorable interactions formed in uncomplexed alanine4Aib. This study addresses the thermodynamic and structural consequences of a replacement of alanine by Aib both in the unfolded and complexed states in proteins.

About this Structure

1FEV is a Protein complex structure of sequences from Bos taurus. Full crystallographic information is available from OCA.

Reference

Structural and thermodynamic consequences of introducing alpha-aminoisobutyric acid in the S peptide of ribonuclease S., Ratnaparkhi GS, Awasthi SK, Rani P, Balaram P, Varadarajan R, Protein Eng. 2000 Oct;13(10):697-702. PMID:11112508 Page seeded by OCA on Fri May 2 16:14:34 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools