1g96

From Proteopedia

Revision as of 14:18, 2 May 2008 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 1g96

HUMAN CYSTATIN C; DIMERIC FORM WITH 3D DOMAIN SWAPPING


Overview

The crystal structure of human cystatin C, a protein with amyloidogenic properties and a potent inhibitor of cysteine proteases, reveals how the protein refolds to produce very tight two-fold symmetric dimers while retaining the secondary structure of the monomeric form. The dimerization occurs through three-dimensional domain swapping, a mechanism for forming oligomeric proteins. The reconstituted monomer-like domains are similar to chicken cystatin except for one inhibitory loop that unfolds to form the 'open interface' of the dimer. The structure explains the tendency of human cystatin C to dimerize and suggests a mechanism for its aggregation in the brain arteries of elderly people with amyloid angiopathy. A more severe 'conformational disease' is associated with the L68Q mutant of human cystatin C, which causes massive amyloidosis, cerebral hemorrhage and death in young adults. The structure of the three-dimensional domain-swapped dimers shows how the L68Q mutation destabilizes the monomers and makes the partially unfolded intermediate less unstable. Higher aggregates may arise through the three-dimensional domain-swapping mechanism occurring in an open-ended fashion in which partially unfolded molecules are linked into infinite chains.

About this Structure

1G96 is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping., Janowski R, Kozak M, Jankowska E, Grzonka Z, Grubb A, Abrahamson M, Jaskolski M, Nat Struct Biol. 2001 Apr;8(4):316-20. PMID:11276250 Page seeded by OCA on Fri May 2 17:18:07 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools