1tsr

From Proteopedia

Revision as of 07:19, 3 May 2008 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 1tsr

P53 CORE DOMAIN IN COMPLEX WITH DNA


Overview

Mutations in the p53 tumor suppressor are the most frequently observed genetic alterations in human cancer. The majority of the mutations occur in the core domain which contains the sequence-specific DNA binding activity of the p53 protein (residues 102-292), and they result in loss of DNA binding. The crystal structure of a complex containing the core domain of human p53 and a DNA binding site has been determined at 2.2 angstroms resolution and refined to a crystallographic R factor of 20.5 percent. The core domain structure consists of a beta sandwich that serves as a scaffold for two large loops and a loop-sheet-helix motif. The two loops, which are held together in part by a tetrahedrally coordinated zinc atom, and the loop-sheet-helix motif form the DNA binding surface of p53. Residues from the loop-sheet-helix motif interact in the major groove of the DNA, while an arginine from one of the two large loops interacts in the minor groove. The loops and the loop-sheet-helix motif consist of the conserved regions of the core domain and contain the majority of the p53 mutations identified in tumors. The structure supports the hypothesis that DNA binding is critical for the biological activity of p53, and provides a framework for understanding how mutations inactivate it.

About this Structure

1TSR is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations., Cho Y, Gorina S, Jeffrey PD, Pavletich NP, Science. 1994 Jul 15;265(5170):346-55. PMID:8023157 Page seeded by OCA on Sat May 3 10:19:18 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools